首页> 外文会议>IEEE Recent Advances in Intelligent Computational Systems >Efficient simulations of spiking neurons on parallel and distributed platforms: Towards large-scale modeling in computational neuroscience
【24h】

Efficient simulations of spiking neurons on parallel and distributed platforms: Towards large-scale modeling in computational neuroscience

机译:并行和分布式平台上尖峰神经元的高效仿真:迈向计算神经科学的大规模建模

获取原文

摘要

Human brain communicates information by means of electro-chemical reactions and processes it in a parallel, distributed manner. Computational models of neurons at different levels of details are used in order to make predictions for physiological dysfunctions. Advances in the field of brain simulations and brain computer interfaces have increased the complexity of this modeling process. With a focus to build large-scale detailed networks, we used high performance computing techniques to model and simulate the granular layer of the cerebellum. Neuronal firing patterns of cerebellar granule neurons were modeled using two mathematical models Hodgkin-Huxley (HH) and Adaptive Exponential Leaky Integrate and Fire(AdEx). The performance efficiency of these modeled neurons was tested against a detailed multi-compartmental model of the granule cell. We compared different schemes suitable for large scale simulations of cerebellar networks. Large networks of neurons were constructed and simulated. Graphic Processing Units (GPU) was employed in the pleasantly parallel implementation while Message Passing Interface (MPI) was used in the distributed computing approach. This allowed to explore constraints of different parallel architectures and to efficiently load balance the tasks by maximally utilizing the available resources. For small scale networks, the observed absolute speedup was 6X in an MPI based approach with 32 processors while GPUs gave 10X performance gain compared to a single CPU implementation. In large networks, GPUs gave approximately 5X performance gain in processing time compared to the MPI implementation. The results enabled us to choose parallelization schemes suitable for large-scale simulations of cerebellar circuits. We are currently extending the network model based on large scale simulations evaluated in this paper and using a hybrid ??? heterogeneous MPI based multi-GPU architecture for incorporating millions of cerebellar neurons for assessing physiol- gical disorders in such circuits.
机译:人脑通过电化学反应传达信息,并以并行,分布式的方式对其进行处理。为了对生理功能障碍做出预测,使用了不同细节水平的神经元计算模型。大脑仿真和大脑计算机接口领域的进步增加了此建模过程的复杂性。为了建立大规模的详细网络,我们使用了高性能的计算技术来对小脑的颗粒层进行建模和仿真。小脑颗粒神经元的神经元放电模式使用Hodgkin-Huxley(HH)和自适应指数泄漏积分与失火(AdEx)两个数学模型进行建模。针对颗粒细胞的详细的多室模型,测试了这些建模神经元的性能效率。我们比较了适用于小脑网络大规模仿真的不同方案。大型神经元网络被构建和模拟。令人愉悦的并行实现中使用了图形处理单元(GPU),而分布式计算方法中则使用了消息传递接口(MPI)。这允许探索不同并行体系结构的约束,并通过最大程度地利用可用资源来有效地负载均衡任务。对于小型网络,在使用32个处理器的基于MPI的方法中,观察到的绝对速度提高了6倍,而与单CPU实现相比,GPU的性能提高了10倍。在大型网络中,与MPI实施相比,GPU在处理时间上的性能提高了大约5倍。结果使我们能够选择适用于小脑电路大规模仿真的并行化方案。我们目前正在基于本文评估的大规模仿真并使用混合???扩展网络模型。基于异类MPI的多GPU架构,用于合并数百万个小脑神经元,以评估此类电路中的生理异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号