首页> 外文期刊>Journal of Computational Mathematics >order results for algebraically stable mono-implicit runge-kutta methods
【24h】

order results for algebraically stable mono-implicit runge-kutta methods

机译:代数稳定的单隐Runge-kutta方法的阶结果

获取原文
获取原文并翻译 | 示例

摘要

It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the order of an s-stage mono- implicit Runge-Kutta method is at most S + 1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta Method being algebraically stable is at most min (s, 4), and the stage order together With the optimal B-convergence order is at most min s, 2), where S = {~s+1 if s = 1,2, _s if s ≥ 3.
机译:众所周知,单隐Runge-Kutta方法已应用于常微分方程初值或边值问题的有效数值解中。 Burrage(1994)已证明s-阶单隐Runge-Kutta方法的阶数至多为S + 1,阶次阶数为至多3。本文证明了s-阶单阶隐式Runge-Kutta方法的阶数至多3。代数稳定的阶段单隐Runge-Kutta方法最多为min(s,4),阶段阶和最佳B收敛阶最大为min s,2),其中S = {〜s + 1如果s = 1,2,则_s如果s≥3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号