首页> 外文期刊>Journal of Computational Electronics >A Deterministic Solver for the 1D Non-Stationary Boltzmann-Poisson System for GaAs Devices: Bulk GaAs and GaAs n~+ -n_i-n~+ Diode
【24h】

A Deterministic Solver for the 1D Non-Stationary Boltzmann-Poisson System for GaAs Devices: Bulk GaAs and GaAs n~+ -n_i-n~+ Diode

机译:用于GaAs器件的一维非平稳Boltzmann-Poisson系统的确定性求解器:块状GaAs和GaAs n〜+ -n_i-n〜+二极管

获取原文
获取原文并翻译 | 示例

摘要

We present a deterministic method for describing the electron transport in spatially one-dimensional gallium arsenide devices. This numerical procedure is based on the combination of kinetic Boltzmann-type equations for a two-valley model of the GaAs conduction band and the Poisson equation in order to consider the electrostatic potential self-consistently. All of the important intra- and intervalley scattering mechanisms for GaAs are taken into account. The dependence of the electron distribution functions on the electron wave vector is treated by means of the multigroup approach, whereas their spatial dependences are handled by a weighted essentially non-oscillatory (WENO) scheme. Numerical results are given for the main transport quantities as functions of time, position and electric field in bulk material and in a n~+ -n_i-n~+ diode. In addition, the proposed numerical method is validated by comparing the results with those of Monte Carlo calculations and the influence of the discretization used in the numerical procedure is discussed.
机译:我们提出一种确定性的方法来描述空间一维砷化镓器件中的电子传输。该数值程序基于GaAs导带两谷模型的动力学Boltzmann型方程和Poisson方程的组合,以便自洽地考虑静电势。 GaAs的所有重要的内部和区间散射技术都已考虑在内。电子分布函数对电子波矢量的依赖性通过多组方法处理,而它们的空间依赖性则通过加权的基本非振荡(WENO)方案来处理。给出了主体材料和n〜+ -n_i-n〜+二极管中主要传输量随时间,位置和电场的函数的数值结果。此外,通过将结果与蒙特卡洛计算的结果进行比较,验证了所提出的数值方法的有效性,并讨论了离散化在数值程序中的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号