首页> 外文期刊>Journal of Computational Electronics >Negative differential resistance in graphene-nanoribbon-carbon-nanotube crossbars:a first-principles multiterminal quantum transport study
【24h】

Negative differential resistance in graphene-nanoribbon-carbon-nanotube crossbars:a first-principles multiterminal quantum transport study

机译:石墨烯-纳米碳-碳纳米管交叉开关中的负微分电阻:第一性原理多末端量子传输研究

获取原文
获取原文并翻译 | 示例

摘要

We simulate quantum transport between a graph-ene nanoribbon (GNR) and a single-walled carbon nanotube (CNT) where electrons traverse vacuum gap between them. The GNR covers CNT over a nanoscale region while their relative rotation is 90°, thereby forming a four-terminal crossbar where the bias voltage is applied between CNT and GNR terminals. The CNT and GNR are chosen as either semiconducting (s) or metallic (m) based on whether their two-terminal conductance exhibits a gap as a function of the Fermi energy or not, respectively. We find nonlinear current-voltage (I-V) characteristics in all three investigated devices-mGNR-sCNT, sGNR-sCNT and mGNR-mCNT crossbars-which are asymmetric with respect to changing the bias voltage from positive to negative. Furthermore, the I-V characteristics of mGNR-sCNT crossbar exhibits negative differential resistance (NDR) with low onset voltage Vndr (~) 0.25 V and peak-to-valley current ratio(~)2.0. The overlap region of the crossbars contains only (~)460 carbon and hydrogen atoms which paves the way for nanoelectronic devices ultrascaled well below the smallest horizontal length scale envisioned by the international technology roadmap for semiconductors. Our analysis is based on the nonequilibrium Green function formalism combined with density functional theory (NEGF-DFT), where we also provide an overview of recent extensions of NEGF-DFT framework (originally developed for two-terminal devices) to multiterminal devices.
机译:我们模拟了石墨烯纳米带(GNR)和单壁碳纳米管(CNT)之间的量子传输,其中电子横越它们之间的真空间隙。当它们的相对旋转为90°时,GNR在纳米级区域上覆盖CNT,从而形成四端子交叉开关,在该端子上施加偏压到CNT和GNR端子之间。 CNT和GNR分别根据其两端电导率是否显示出作为费米能量的函数的间隙来选择是半导体还是金属(m)。我们在所有三个研究的器件-mGNR-sCNT,sGNR-sCNT和mGNR-mCNT交叉开关中发现了非线性电流-电压(I-V)特性,这些器件相对于将偏置电压从正变为负是不对称的。此外,mGNR-sCNT交叉开关的I-V特性表现为负差分电阻(NDR),起始电压Vndr(〜)为0.25 V,峰谷电流比为(〜)2.0。横杆的重叠区域仅包含(〜)460个碳原子和氢原子,这为纳米电子器件的超尺度铺平了道路,而纳米电子器件的尺寸远低于国际半导体技术路线图所设想的最小水平长度尺度。我们的分析基于非平衡Green函数形式主义与密度泛函理论(NEGF-DFT)的结合,其中我们还概述了NEGF-DFT框架(最初为两终端设备开发)最近向多终端设备扩展的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号