首页> 外文期刊>Journal of Computational Electronics >Doping engineering to enhance the performance of double-gate pMOSFETs with ultrashort gate length (5 nm)
【24h】

Doping engineering to enhance the performance of double-gate pMOSFETs with ultrashort gate length (5 nm)

机译:掺杂工程以提高具有超短栅极长度(5nm)的双栅极PMOSFET的性能

获取原文
获取原文并翻译 | 示例

摘要

Enhancing the performance of Si field-effect transistors with ultrashort gate length is very challenging because of the increase of the source-to-drain tunneling and other short-channel effects. Doping engineering can affect the tunneling probability by varying the energy band profile and electric field. Full quantum ballistic simulations are performed here to study the use of doping engineering as a tool to improve the electrostatic integrity in a pMOSFETs device with a double-gate structure and a gate length of 5 nm. The simulation methodology is based on nonequilibrium Green's functions, employing a six-band k center dot p Hamiltonian. The influence of the source/drain doping profile/concentration on the electric field in both the transport and confinement directions is also discussed. The trends found for the ON- to OFF-state current ratio and the switching delay differ, depending on the doping profile/concentration for high-performance and low-operating-power applications. The results of this study highlight the importance of using a Gaussian doping profile, as compared with constant doping, to improve the performance of such ultrascaled devices in terms of enhancing the subthreshold swing, reducing the drain-induced barrier lowering, and achieving low source-to-drain tunneling. The doping concentration can be optimized by controlling the source-to-drain tunneling and overcoming the source exhaustion. The selection of a certain damping factor in the Gaussian function can be used as a parameter, in addition to the peak doping concentration, to optimize the device performance.
机译:由于源到漏极隧道和其他短信效应的增加,增强了超短栅极长度的SI场效应晶体管的性能非常具有挑战性。掺杂工程可以通过改变能带型材和电场来影响隧道概率。在此进行完全量子弹道模拟,以研究掺杂工程用作改善PMOSFET装置中的静电完整性的工具,具有双栅极结构和5nm的栅极长度。仿真方法基于非Quilibium绿色功能,采用六频段K中心点P Hamiltonian。还讨论了源/排水掺杂谱/浓度在运输和限制方向上的电场上的影响。根据高性能和低操作功率应用的掺杂型谱/浓度,对截止状态电流比和开关延迟的趋势不同。该研究的结果突出了使用高斯掺杂型材的重要性,与恒定掺杂相比,在增强亚阈值摆动方面提高这种溢素器件的性能,降低了漏极引起的屏障降低,实现低来源 - 排水隧道。通过控制源极排水隧道和克服源耗尽,可以优化掺杂浓度。除了峰值掺杂浓度之外,还可以使用高斯函数中的某个阻尼因子作为参数来优化器件性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号