首页> 外文学位 >Physical model enhancement and exploration of bandgap engineering in novel sub-100nm pMOSFETs.
【24h】

Physical model enhancement and exploration of bandgap engineering in novel sub-100nm pMOSFETs.

机译:新型100nm以下pMOSFET中物理模型的增强和带隙工程的探索。

获取原文
获取原文并翻译 | 示例

摘要

This work involves physical model enhancement in a new device simulation platform, MINIMOS-NT, and a study of the applications of bandgap engineering in novel sub-100nm pMOSFET design. Less cost, better performance and continuous scalability have been the driving force for the rapid development of semiconductor technologies. Because of the great challenges in Si CMOS scaling, developing new materials and new device structures is important. In the course of searching possible solutions, various strained Si/SiGe heterostructures were investigated in this work, by both computer simulations and experimental characterization. While drift-diffusion and hydrodynamic simulations were mostly used in the work, Monte Carlo simulations were performed whenever it was necessary, in order to gain better understanding. The experimental work validates our simulation results. Although some device structures, such as graded SiGe channels and source-side energy steps are found to be counter-productive in improving drive current, the analyses of the results provide us more insights into device physics in the deep submicron regime. The use of strained SiGe in the source and/or drain did show the advantage of reduced short-channel effects, one of the greatest problems of the device scaling beyond 100 nm. The drawback of such devices is the degraded drive current due to the hetero-barriers in the channel. This obstacle can be overcome by using a thin Si or SiGe cap, where the current flows without passing through the hetero-barriers. Finally, a novel pMOSFET with a SiGe source/drain and a Si/SiGe/Si quantum well channel is proposed, which is called a high mobility heterojunction transistor (HMHJT). Higher drive current due to mobility enhancement in a strained SiGe channel and suppressed short-channel effects due to the band offset between the source/drain and the bulk are predicted. Compared to realistic, conventional Si devices, HMHJTs have improved device performance and scalability for various circuit applications, such as low standby power/leakage, and low operating power applications.
机译:这项工作包括在新的器件仿真平台MINIMOS-NT中增强物理模型,并研究带隙工程在新型100nm以下pMOSFET设计中的应用。更低的成本,更好的性能和持续的可扩展性一直是半导体技术快速发展的驱动力。由于Si CMOS缩放的巨大挑战,开发新材料和新器件结构非常重要。在寻找可能的解决方案的过程中,通过计算机模拟和实验表征,研究了各种应变的Si / SiGe异质结构。尽管在工作中主要使用了漂移扩散和流体动力学模拟,但在需要时会进行蒙特卡洛模拟,以便更好地理解。实验工作验证了我们的仿真结果。尽管发现某些器件结构(例如渐变的SiGe通道和源极侧能量步长)在改善驱动电流方面起反作用,但结果分析为我们提供了深入了解深亚微米状态下器件物理的见解。在源极和/或漏极中使用应变SiGe确实显示出减少了短沟道效应的优势,这是器件扩展到100 nm以上的最大问题之一。这种设备的缺点是由于通道中的异质势垒导致驱动电流降低。可以通过使用薄的Si或SiGe帽来克服这一障碍,在帽或帽中,电流不流过异质势垒。最后,提出了一种具有SiGe源/漏和Si / SiGe / Si量子阱沟道的新型pMOSFET,称为高迁移率异质结晶体管(HMHJT)。可以预测由于应变SiGe沟道中迁移率增强而产生的较高驱动电流,以及由于源极/漏极与主体之间的能带偏移而导致的短沟道效应得到抑制。与现实的常规Si器件相比,HMHJT在各种电路应用(例如低待机功率/泄漏和低工作功率应用)中具有更高的器件性能和可扩展性。

著录项

  • 作者

    Ouyang, Qiqing Christine.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号