首页> 外文期刊>Journal of Circuits, Systems, and Computers >SCRN: A Complex Network Reconstruction Method Based on Multiple Time Series
【24h】

SCRN: A Complex Network Reconstruction Method Based on Multiple Time Series

机译:SCRN:基于多时间序列的复杂网络重建方法

获取原文
获取原文并翻译 | 示例

摘要

Complex network reconfiguration has always been an important task in complex network research. Simple and effective complex network reconstruction methods can promote the understanding of the operation of complex systems in the real world. There are many complex systems, such as stock systems, social systems and thermal power systems. These systems generally produce correlated time series of data. Discovering the relationships among these multivariate time series is the focus of this research. This paper proposes a Spearman coefficient reconstruction network (SCRN) method based on the Spearman correlation coefficient. In the SCRN method, we select entities in the real world as the nodes of the network and determine connection weights of the network edges by calculating the Spearman correlation coefficients among nodes. In this paper, we selected a stock system and boiler equipment in a thermal power generation system to construct two complex network models. For the stock network model, we used the classic Girvan-Newman (GN) algorithm for community discovery to determine whether the proposed network topology is reasonable. For the boiler network model, we built a predictive model based on an support vector regression (SVR) model in machine learning, and we verified the rationality of the boiler model by predicting the amount of boiler steam.
机译:复杂的网络重新配置始终是复杂网络研究中的重要任务。简单有效的复杂网络重建方法可以促进对现实世界中复杂系统的运行的理解。有许多复杂的系统,例如库存系统,社交系统和热电系统。这些系统通常产生相关的时间序列数据。发现这些多变量时间序列之间的关系是这项研究的重点。本文提出了一种基于Spearman相关系数的Spearman系数重构网络(SCRN)方法。在SCRN方法中,我们选择现实世界中的实体作为网络的节点,并通过计算节点之间的Spearman相关系数来确定网络边的连接权重。在本文中,我们在热发电系统中选择了一种储存系统和锅炉设备,构建了两个复杂的网络模型。对于股票网络模型,我们使用了Classic Girvan-Newman(GN)算法进行社区发现,以确定所提出的网络拓扑是合理的。对于锅炉网络模型,我们基于机器学习中的支持向量(SVR)模型构建了一种预测模型,我们通过预测锅炉蒸汽量来验证锅炉模型的合理性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号