首页> 外文期刊>Journal of Applied Physics >Influence of crystallographic structure on polarization reversal in polycrystalline ferroelectric/ferroelastic materials
【24h】

Influence of crystallographic structure on polarization reversal in polycrystalline ferroelectric/ferroelastic materials

机译:晶体结构对多晶铁电/铁弹性材料中极化反转的影响

获取原文
获取原文并翻译 | 示例

摘要

Polarization reversal is the most fundamental physical process in ferroelectrics and directly or indirectly influences all functional properties of these materials. While this process is influenced by various intrinsic material's properties and external boundary conditions, arguably one of the most dominant parameters is the material's crystallographic structure. In this work, the influence of the crystallographic structure on the polarization reversal was investigated on the model ferroelectric system Pb(Zr,Ti)O-3 using simultaneous time-dependent polarization and strain measurements. This method enabled one to extend the understanding beyond the widely investigated relationship between the structure and coercive fields. Polarization reversal was described by three regimes, which represent a sequence of well-defined non-180 degrees and 180 degrees switching events. The crystallographic structure was found to largely influence the mobility of the non-180 degrees domain walls during the first switching regime, the amplitude of negative strain, and the broadness of the transition between the first and the second switching regimes, as well as the speed of the second (main) switching regime. The observed changes could be related to the amount of possible polarization directions, distribution of the local electric fields, and strain mismatch at domain wall junctions influenced by the lattice distortion. Moreover, activation fields for the first and the second regimes were experimentally determined for the investigated series of Pb(Zr,Ti)O-3 samples. Besides providing insight into fundamental mechanisms of polarization reversal, these results can also be used as input parameters for micromechanical or stochastic models. Published under license by AIP Publishing.
机译:极化反转是铁电中最基本的物理过程,并且直接或间接影响这些材料的所有功能特性。虽然此过程受各种固有材料的特性和外部边界条件的影响,但可以说,最主要的参数之一是材料的晶体结构。在这项工作中,使用同时随时间变化的极化和应变测量,在模型铁电系统Pb(Zr,Ti)O-3上研究了晶体结构对极化反转的影响。这种方法使人们能够将理解范围扩展到结构和矫顽场之间广泛研究的关系之外。极化反转由三种状态表示,它们代表了一系列定义明确的非180度和180度切换事件。发现晶体结构在第一开关状态期间极大地影响非180度畴壁的迁移率,负应变的幅度以及第一和第二开关状态之间的过渡宽度以及速度第二个(主要)切换方式中的一个。观察到的变化可能与可能的极化方向的数量,局部电场的分布以及受晶格畸变影响的畴壁结处的应变失配有关。此外,通过实验确定了一系列的Pb(Zr,Ti)O-3样品的第一和第二种机制的激活场。除了提供对极化反转基本机制的了解之外,这些结果还可以用作微机械或随机模型的输入参数。由AIP Publishing授权发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第17期|174101.1-174101.10|共10页
  • 作者单位

    Tech Univ Darmstadt, Inst Mat Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany;

    Forschungszentrum Julich, Inst Energy & Climate Res, IEK 9, D-52425 Julich, Germany;

    Tech Univ Darmstadt, Inst Mat Sci, Alarich Weiss Str 2, D-64287 Darmstadt, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号