...
首页> 外文期刊>Nature Materials >Ferroelectric polarization reversal via successive ferroelastic transitions
【24h】

Ferroelectric polarization reversal via successive ferroelastic transitions

机译:通过连续的铁弹性跃迁逆转铁电极化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr_(0.2)Ti_(0.8)O_3 thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed.
机译:可切换极化使铁电体成为存储器,致动器和电光设备中的关键组件,并成为纳米电子学的潜在候选者。尽管已经进行了许多有关铁电开关的研究,但是关于复杂域结构和器件中的开关仍有许多待理解的地方。在这项工作中,薄膜外延,宏观和纳米级性质以及开关特性以及分子动力学模拟的结合被用来阐明PbZr_(0.2)Ti_(0.8)O_3薄膜中开关的性质。在(001)-/(101)-和(111)-取向的薄膜之间显示出差异,后者表现出具有高密度的90°畴壁和相当宽的开关特性的复杂的纳米孪晶铁电畴结构。分子动力学模拟预测180°(对于(001)-/(101)取向的薄膜)和90°多步切换(对于(111)取向的薄膜),随后在频闪压电响应力显微镜下观察到这些过程。这些结果对我们对铁电开关的理解有影响,并为改变磁畴反转速度提供了机会。

著录项

  • 来源
    《Nature Materials》 |2015年第1期|79-86|共8页
  • 作者单位

    Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA;

    The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA;

    The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA;

    Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA;

    Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA;

    The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA;

    Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号