首页> 外文期刊>Journal of Applied Physics >Influence of crystallographic structure on polarization reversal in polycrystalline ferroelectric/ferroelastic materials
【24h】

Influence of crystallographic structure on polarization reversal in polycrystalline ferroelectric/ferroelastic materials

机译:晶体结构对多晶铁电/铁弹性材料极化逆转的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Polarization reversal is the most fundamental physical process in ferroelectrics and directly or indirectly influences all functional properties of these materials. While this process is influenced by various intrinsic material's properties and external boundary conditions, arguably one of the most dominant parameters is the material's crystallographic structure. In this work, the influence of the crystallographic structure on the polarization reversal was investigated on the model ferroelectric system Pb(Zr,Ti)O-3 using simultaneous time-dependent polarization and strain measurements. This method enabled one to extend the understanding beyond the widely investigated relationship between the structure and coercive fields. Polarization reversal was described by three regimes, which represent a sequence of well-defined non-180 degrees and 180 degrees switching events. The crystallographic structure was found to largely influence the mobility of the non-180 degrees domain walls during the first switching regime, the amplitude of negative strain, and the broadness of the transition between the first and the second switching regimes, as well as the speed of the second (main) switching regime. The observed changes could be related to the amount of possible polarization directions, distribution of the local electric fields, and strain mismatch at domain wall junctions influenced by the lattice distortion. Moreover, activation fields for the first and the second regimes were experimentally determined for the investigated series of Pb(Zr,Ti)O-3 samples. Besides providing insight into fundamental mechanisms of polarization reversal, these results can also be used as input parameters for micromechanical or stochastic models. Published under license by AIP Publishing.
机译:极化反转是铁电解中最基本的物理过程,直接或间接地影响这些材料的所有功能性质。虽然该过程受到各种内在材料的性质和外部边界条件的影响,但可以说是最多主导参数之一是材料的晶体结构。在这项工作中,使用同时依赖于时间依赖性和应变测量,研究了在模型铁电系统PB(Zr,Ti)O-3上进行了晶体结构对极化反转的影响。该方法使能够将理解扩展到超出结构和矫顽领域之间的广泛调查的关系。通过三个制度描述了极化反转,其代表了一系列明确定义的非-180度和180度的切换事件。发现结晶结构在第一切换状态期间,在第一切换状态下,负应变的幅度以及第一和第二切换方案之间的过渡的宽度以及速度以及速度的速度以及速度很大地影响非-180度域壁的迁移率。以及速度第二(主要)切换制度。观察到的改变可能与可能的偏振方向,局部电场分布的量,以及受晶片壁交叉口的应变失配。此外,针对研究的PB(Zr,Ti)O-3样品进行了先进的第一和第二制度的激活场。除了提供洞察极化逆转的基本机制外,这些结果也可用作微机械或随机模型的输入参数。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第17期|174101.1-174101.10|共10页
  • 作者单位

    Tech Univ Darmstadt Inst Mat Sci Alarich Weiss Str 2 D-64287 Darmstadt Germany;

    Forschungszentrum Julich Inst Energy & Climate Res IEK 9 D-52425 Julich Germany;

    Tech Univ Darmstadt Inst Mat Sci Alarich Weiss Str 2 D-64287 Darmstadt Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号