...
首页> 外文期刊>Journal of Applied Physics >Thermal cycling reliability of Cu/SnAg double-bump flip chip assemblies for 100 μm pitch applications
【24h】

Thermal cycling reliability of Cu/SnAg double-bump flip chip assemblies for 100 μm pitch applications

机译:用于100μm间距应用的Cu / SnAg双凸块倒装芯片组件的热循环可靠性

获取原文
获取原文并翻译 | 示例
           

摘要

A thick Cu column based double-bump flip chip structure is one of the promising alternatives for fine pitch flip chip applications. In this study, the thermal cycling (T/C) reliability of Cu/SnAg double-bump flip chip assemblies was investigated, and the failure mechanism was analyzed through the correlation of T/C test and the finite element analysis (FEA) results. After 1000 thermal cycles, T/C failures occurred at some Cu/SnAg bumps located at the edge and corner of chips. Scanning acoustic microscope analysis and scanning electron microscope observations indicated that the failure site was the Cu column/Si chip interface. It was identified by a FEA where the maximum stress concentration was located during T/C. During T/C, the Al pad between the Si chip and a Cu column bump was displaced due to thermomechanical stress. Based on the low cycle fatigue model, the accumulation of equivalent plastic strain resulted in thermal fatigue deformation of the Cu column bumps and ultimately reduced the thermal cycling lifetime. The maximum equivalent plastic strains of some bumps at the chip edge increased with an increased number of thermal cycles. However, equivalent plastic strains of the inner bumps did not increase regardless of the number of thermal cycles. In addition, the z-directional normal plastic strain ε_(22) was determined to be compressive and was a dominant component causing the plastic deformation of Cu/SnAg double bumps. As the number of thermal cycles increased, normal plastic strains in the perpendicular direction to the Si chip and shear strains were accumulated on the Cu column bumps at the chip edge at low temperature region. Thus it was found that the Al pad at the Si chip/Cu column interface underwent thermal fatigue deformation by compressive normal strain and the contact loss by displacement failure of the Al pad, the main T/C failure mode of the Cu/SnAg flip chip assembly, then occurred at the Si chip/Cu column interface shear strain deformation during T/C.
机译:基于厚铜柱的双凸点倒装芯片结构是用于细间距倒装芯片应用的有前途的替代方法之一。在这项研究中,研究了Cu / SnAg双凸块倒装芯片组件的热循环(T / C)可靠性,并通过T / C测试和有限元分析(FEA)结果的相关性分析了失效机理。经过1000次热循环后,位于芯片边缘和拐角处的某些Cu / SnAg凸点发生了T / C失效。扫描声显微镜分析和扫描电子显微镜观察表明,失效部位是Cu柱/ Si芯片界面。通过FEA可以确定T / C期间最大应力集中所在的位置。在T / C期间,由于热机械应力,Si芯片和Cu柱凸点之间的Al垫发生了位移。基于低周疲劳模型,等效塑性应变的累积导致铜柱凸块的热疲劳变形,并最终缩短了热循环寿命。随着热循环次数的增加,芯片边缘某些凸点的最大等效塑性应变增加。但是,不管热循环的次数如何,内凸块的等效塑性应变都不会增加。另外,确定z方向法向塑性应变ε_(22)为压缩性的,并且是引起Cu / SnAg双凸块塑性变形的主要成分。随着热循环次数的增加,在低温区域,在垂直于硅芯片的方向上的正常塑性应变和剪切应变累积在芯片边缘处的铜柱凸块上。因此发现,Si芯片/ Cu柱界面处的Al垫由于压缩法向应变而经历了热疲劳变形,并且由于Al垫的位移破坏而发生了接触损耗,这是Cu / SnAg倒装芯片的主要T / C破坏方式。组装,然后在T / C期间在Si芯片/ Cu柱界面处发生剪切应变变形。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第1期|367-374|共8页
  • 作者单位

    Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea;

    Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea;

    Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea;

    Nepes Corporation 654-2, Gak-ri, Ochang-myun, Cheongwon-gun, Chungchungbuk-do 363-883, South Korea;

    Nepes Corporation 654-2, Gak-ri, Ochang-myun, Cheongwon-gun, Chungchungbuk-do 363-883, South Korea;

    Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号