...
首页> 外文期刊>Journal of Applied Physics >Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: Predicting the future of strained silicon
【24h】

Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: Predicting the future of strained silicon

机译:应变对三维,二维和一维硅逻辑器件的影响:预测应变硅的未来

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using a classification scheme based on carrier confinement type (electrostatic and spatial) and the degrees of freedom of the mobile carriers (3DOF, 2DOF, and 1DOF), strain effects on 3DOF to 1DOF silicon logic devices are compared from quantum confinement and device geometry perspectives. For these varied device geometries and types, the effects of strain-induced band splitting and band warping on the modification of the average conductivity effective mass and carrier scattering rates are evaluated. It is shown that the beneficial effects of strain-induced band splitting are the most effective for devices with little or no initial band splitting and become less so for devices with already large built-in band splitting. For these devices with large splitting energy, the potential for strain-induced carrier conductivity mass reduction through repopulation of lower energy bands and the suppression of optical intervalley phonon scattering are limited. On the other hand, for all devices without spatial confinement, a comparable amount of effective mass reduction occurs through favorable strain-induced band warping. Under spatial carrier confinement, much higher strain levels with respect to unconfined or electrically confined devices are required to observe strain-induced band warping in the band structure, with larger strain requirements as the confinement dimension decreases. In electrically confined volume-inversion devices, the favorable strain type required for carrier mass reduction results in increased surface scattering by bringing the carrier centroid closer to gate surfaces. However, for spatially confined volume-inversion devices, the favorable mechanical strain does not alter the carrier distribution in the device cross section. Consequently, strain is expected to be more effective in modification of low field carrier transport in electrically confined volume-inversion devices and less for spatially confined devices, with respect to conventional 2DOF planar metal-oxide-semiconductor field-effect transistors. On the other hand, for high-field quasiballistic transport, spatially confined devices, have the highest potential for strain-induced modification of device ballisticity, since the carrier backscattering ratio strongly depends on the surface roughness scattering rate at the source-end of the channel.
机译:使用基于载流子限制类型(静电和空间)和移动载流子的自由度(3DOF,2DOF和1DOF)的分类方案,从量子限制和器件几何角度比较了3DOF到1DOF硅逻辑器件的应变效应。对于这些变化的器件几何形状和类型,评估了应变引起的能带分裂和能带翘曲对平均电导有效质量和载流子散射速率的影响。结果表明,应变引起的频带分裂的有益效果对于具有很少或没有初始频带分裂的设备最有效,而对于具有较大内置频带分裂的设备则最不明显。对于这些具有大分裂能的器件,通过重新填充较低能带和抑制光学区间激子声子散射来降低应变引起的载流子电导率质量的潜力是有限的。另一方面,对于所有没有空间限制的器件,通过有利的应变诱发带翘曲,可发生相当数量的有效质量降低。在空间载流子约束下,需要相对于无约束或电约束器件更高的应变水平,以观察带结构中的应变诱发的带翘曲,随着约束尺寸的减小,应变需求也更大。在电限制的体积反转装置中,减少载流子质量所需的有利应变类型会导致载流子质心靠近栅极表面,从而导致表面散射增加。然而,对于空间受限的体积反转器件,有利的机械应变不会改变器件横截面中的载流子分布。因此,相对于传统的2DOF平面金属氧化物半导体场效应晶体管,应变有望在电约束的体积反转器件中改善低场载流子传输方面更有效,而在空间受限的器件中应变更小。另一方面,对于高场准弹道运输来说,空间受限的器件具有应变诱发的器件弹道性修改的最大潜力,因为载流子的反向散射比很大程度上取决于通道源端的表面粗糙度散射率。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第9期|p.093716.1-093716.24|共24页
  • 作者单位

    Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611-6200, USA;

    Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611-6200, USA;

    Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611-6200, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号