首页> 外文期刊>Japanese journal of applied physics >Experimental and first-principles studies of high-pressure effects on the structural, electronic, and optical properties of semiconductors and lanthanide doped solids
【24h】

Experimental and first-principles studies of high-pressure effects on the structural, electronic, and optical properties of semiconductors and lanthanide doped solids

机译:实验和第一性原理研究高压对半导体和掺杂镧系元素的固体的结构,电子和光学性质的影响

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a broad overview of our recent experimental and theoretical results obtained for different types of materials: CdTe and CuGa1- xInxS2 chalcopyrite semiconductors, GaN/ AlN wide band gap semiconductor quantum wells, and lanthanide-doped dielectric materials. The analysis of pressure-induced phase transitions, variations of the band gaps, refractive index and the pressure dependence of optical properties of these materials is discussed. The presented results show that the high pressure technique is a very useful tool for scientific research and development of of light-emitting technologies. It allows for identification of radiative recombination mechanisms in solid-state light emitters. In polar III-nitride semiconductors, ab initio calculations revealed that the pressure-induced change of the band gap plays minor role, whereas the built-in electric field in heterostructures increases with pressure thus affecting their basic physical properties, i. e., producing a large red-shift of the photoluminescence and lowering the quantum efficiency due to the quantum confined Stark effect. For wide (> 4 nm) quantum wells, the reduction of the band-to-band emission efficiency leads to deep defect dominant emission which is almost pressure independent. The observed behavior proves that pressure investigations combined with ab initio calculations can identify the nature of the optical transitions and the main physical factors affecting the radiative efficiency in polar quantum well systems. Furthermore, high pressure studies of the emission and excitation spectra of Y2O2S doped with Tb3+ and Eu3+ allowed estimating the energies of the ground states of all divalent and trivalent lanthanide ions in respect to the valence and conduction band edges of the Y2O2S host. Band gap energy and difference between energies of the ground states of lanthanide ions and band edges have been calculated as a function of pressure. It is shown that pressure causes an increase of the energy of localized states related to the lanthanide ions with respect to the valence band, and an increase of the band gap energy. (C) 2017 The Japan Society of Applied Physics
机译:在本文中,我们对从不同类型的材料(CdTe和CuGa1-xInxS2黄铜矿半导体,GaN / AlN宽带隙半导体量子阱以及掺杂镧系元素的介电材料)获得的最新实验和理论结果进行了概述。讨论了压力诱导的相变,带隙变化,折射率和这些材料的光学性质对压力的依赖性的分析。结果表明,高压技术是发光技术的科学研究和开发的非常有用的工具。它可以识别固态发光体中的辐射复合机制。在极性III族氮化物半导体中,从头算计算表明,压力引起的带隙变化起着较小的作用,而异质结构中的内置电场随压力的增加而增加,从而影响其基本物理性能,即。例如,由于量子限制的斯塔克效应,光致发光产生大的红移并降低了量子效率。对于宽(> 4 nm)的量子阱,带间发射效率的降低会导致深缺陷主导发射,这几乎与压力无关。观察到的行为证明,压力研究与从头算计算相结合,可以识别光学跃迁的性质以及影响极性量子阱系统辐射效率的主要物理因素。此外,对掺有Tb3 +和Eu3 +的Y2O2S的发射和激发光谱进行高压研究,可以估算所有二价和三价镧系元素离子相对于Y2O2S主体的价态和导带边缘的基态能量。已计算出带隙能量和镧系离子的基态能量与能带边缘之间的能量差作为压力的函数。结果表明,压力导致与镧系离子有关的局部态能量相对于价带增加,并且带隙能量增加。 (C)2017日本应用物理学会

著录项

  • 来源
    《Japanese journal of applied physics》 |2017年第5s3期|05FA02.1-05FA02.17|共17页
  • 作者单位

    Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China|Univ Tartu, Inst Phys, EE-50411 Tartu, Estonia|Jan Dlugosz Univ, Inst Phys, PL-42200 Czestochowa, Poland;

    Univ Gdansk, Fac Math Phys & Informat, Inst Expt Phys, PL-80952 Gdansk, Poland;

    Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland;

    Polish Acad Sci, Inst High Pressure Phys, PL-01142 Warsaw, Poland;

    Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland;

    Univ Grenoble Alpes, F-38000 Grenoble, France|CEA Grenoble, INAC PHELIQS, F-38000 Grenoble, France;

    Polish Acad Sci, Inst High Pressure Phys, PL-01142 Warsaw, Poland;

    Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland|Cardinal Stefan Wyszynski Univ, Coll Sci, Dept Math & Nat Sci, PL-01815 Warsaw, Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号