首页> 外文期刊>International Journal of Service Science, Management, Engineering, and Technology >Bangla and Oriya Script Lines Identification from Handwritten Document Images in Tri-script Scenario
【24h】

Bangla and Oriya Script Lines Identification from Handwritten Document Images in Tri-script Scenario

机译:在三脚本方案中从手写文档图像中识别孟加拉语和奥里亚语脚本行

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two popular eastern Indian scripts namely Bangla and Oriya are considered for Line-level script identification considering two Tri-script groups where Devnagari and Roman are kept common in each group. A 27 dimensional feature vector has been constructed using FD (Fractal Dimension) and IMT (Interpolated Morphological Transform). 600 Line-level handwritten document images of each Tri-script groups have been considered for experimentation. Promising results has been found using multiple classifiers where MLP (Multi-Layer Perceptron) Neural Network and LMT (Logistic Model Tree) perform best for BDR (Bangla-Devnagari-Roman) combinations with 97% accuracy and LMT outperforms over others for ODR (Oriya-Devnagari-Roman) combinations with 97.7% accuracy. Bi-script performance analysis has also been made where combinations BR (Bangla-Roman) and BD (Bangla-Devnagari) results with accuracy of 98% and 97.5% respectively for the first group. Whereas for the second group OD (Oriya-Devnagari) and OR (Oriya-Roman) shows an accuracy of 98.25% and 98% respectively.
机译:在本文中,考虑了两个Tri-script组,其中Devnagari和Roman在每个组中保持相同,因此考虑了两种流行的东印度语脚本,即Bangla和Oriya。使用FD(分形维)和IMT(内插形态变换)已构建了27维特征向量。每个Tri-script组的600行级手写文档图像已被考虑进行实验。使用多个分类器发现了有希望的结果,其中MLP(多层感知器)神经网络和LMT(逻辑模型树)的BDR(孟加拉-德文纳加里-罗马)组合表现最佳,准确率达97%,LMT优于其他ODR(Oriya) -Devnagari-Roman)组合,准确率为97.7%。还进行了双向脚本性能分析,其中第一组的BR(孟加拉-罗马)和BD(孟加拉-Devnagari)组合的准确度分别为98%和97.5%。而第二组OD(Oriya-Devnagari)和OR(Oriya-Roman)的准确度分别为98.25%和98%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号