首页> 外文会议>International Conference on Data Science and Communication >Script Identification from Handwritten document Images Using LBP Technique at Block level
【24h】

Script Identification from Handwritten document Images Using LBP Technique at Block level

机译:在块级别使用LBP技术从手写文档图像中识别脚本

获取原文

摘要

The documents are in multilingual form in India, it is required to automatically identify type of the script and feed script document to the appropriate Optical Character Recognition system for information retrieval. This paper presents an efficient handwritten script recognition method using Local Binary Pattern operator. The features are extracted from a block of handwritten document image. Recognition of the script type is done using Nearest Neighbor and Support Vector Machine classifiers. Experiments are performed on images of handwritten documents written in English, Hindi, Kannada, Malayalam, Telugu, and Urdu scripts. KNN and SVM classifiers yielded recognition accuracy of 98.46% and 99.5%, respectively.
机译:在印度,这些文档采用多语种形式,因此需要自动识别脚本的类型,并将脚本文档馈送到相应的光学字符识别系统以进行信息检索。本文提出了一种有效的使用本地二进制模式算子的手写脚本识别方法。这些特征是从一块手写文档图像中提取的。脚本类型的识别是使用最近邻和支持向量机分类器完成的。实验以英语,北印度语,卡纳达语,马拉雅拉姆语,泰卢固语和乌尔都语脚本编写的手写文档的图像进行。 KNN和SVM分类器的识别精度分别为98.46%和99.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号