首页> 外文期刊>International journal of multiscale computational engineering >A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
【24h】

A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS

机译:周期性非均质COSSERAT材料力学分析的一种新的多尺度有限元方法。

获取原文
获取原文并翻译 | 示例

摘要

A new multiscale finite element method is developed for mechanical analysis of periodic heterogeneous Cosserat materials. The main idea of the method is to numerically construct the multiscale base functions to capture the small-scale features of the coarse elements. Considering the existence of rotation in the Cosserat materials, specified boundary conditions of the base functions for extended multiscale finite element method (EMsFEM) are developed based on the relationship between transverse displacement and rotation (slope) of the two-node beam element, and the corresponding periodic boundary conditions are developed. By adopting both kinds of boundary conditions, the numerical base functions for displacement and rotation fields of Cosserat materials are constructed, respectively, to establish the relationship between the macroscopic deformation and the microscopic stress and strain. It is shown that the proposed method does not require the estimation of the overall material parameters of the heterogeneous Cosserat materials as the general homogenization methods. Numerical examples are carried out to verify the validity and efficiency of the developed multiscale finite element method.
机译:针对周期性异质Cosserat材料的力学分析,开发了一种新的多尺度有限元方法。该方法的主要思想是通过数值构造多尺度基函数来捕获粗糙元素的小尺度特征。考虑到Cosserat材料中存在旋转,基于两节点梁单元的横向位移和旋转(斜率)之间的关系,开发了扩展多尺度有限元方法(EMsFEM)的基本函数的指定边界条件。开发了相应的周期性边界条件。通过采用两种边界条件,分别构造了Cosserat材料的位移和旋转场的数值基函数,以建立宏观变形与微观应力和应变之间的关系。结果表明,所提出的方法不需要像一般均质化方法那样估计异质Cosserat材料的整体材料参数。数值算例验证了所开发多尺度有限元方法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号