首页> 外文期刊>International journal of modeling, simulation and scientific computing >Study of rapid face modeling technology based on Kinect
【24h】

Study of rapid face modeling technology based on Kinect

机译:基于Kinect的快速人脸建模技术研究

获取原文
获取原文并翻译 | 示例

摘要

This paper improves the algorithm of point cloud filtering and registration in 3D modeling, aiming for smaller sampling error and shorter processing time of point cloud data. Based on collaborative sampling among several Kinect devices, we analyze the deficiency of current filtering algorithm, and use a novel method of point cloud filtering. Meanwhile, we use Fast Point Feature Histogram (FPFH) algorithm for feature extraction and point cloud registration. Compared with the aligning process using Point Feature Histograms (PFH), it only takes 9 min when the number of points is about 500,000, shortening the aligning time by 47.1%. To measure the accuracy of the registration, we propose an algorithm which calculates the average distance of the corresponding coincident parts of two point clouds, and we improve the accuracy to an average distance of 0.7 mm. In the surface reconstruction section, we adopt Ball Pivoting algorithm for surface reconstruction, obtaining image with higher accuracy in a shorter time.
机译:本文针对3D建模中的点云过滤和配准算法进行了改进,以期实现更小的采样误差和更短的点云数据处理时间。基于几种Kinect设备之间的协作采样,我们分析了当前过滤算法的不足,并使用了一种新的点云过滤方法。同时,我们使用快速点特征直方图(FPFH)算法进行特征提取和点云配准。与使用点特征直方图(PFH)的对齐过程相比,当点数约为500,000时仅花费9分钟,将对齐时间缩短了47.1%。为了测量配准的准确性,我们提出了一种算法,该算法计算两个点云的对应重合部分的平均距离,并将精度提高到0.7毫米的平均距离。在曲面重建部分,我们采用Ball Pivoting算法进行曲面重建,从而在较短的时间内获得了更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号