首页> 外文期刊>International journal of grid and high performance computing >Multimedia Feature Mapping and Correlation Learning for Cross-Modal Retrieval
【24h】

Multimedia Feature Mapping and Correlation Learning for Cross-Modal Retrieval

机译:跨模态检索的多媒体特征映射和相关学习

获取原文
获取原文并翻译 | 示例

摘要

This article describes how with the rapid increasing of multimedia content on the Internet, the need for effective cross-modal retrieval has attracted much attention recently. Many related works ignore the latent semantic correlations of modalities in the non-linear space and the extraction of high-level modality features, which only focuses on the semantic mapping of modalities in linear space and the use of low-level artificial features as modality feature representation. To solve these issues, the authors first utilizes convolutional neural networks and topic modal to obtain a high-level semantic feature of various modalities. Sequentially, they propose a supervised learning algorithm based on a kernel with partial least squares that can capture semantic correlations across modalities. Finally, the joint model of different modalities is learnt by the training set. Extensive experiments are conducted on three benchmark datasets that include Wikipedia, Pascal and MIRFlickr. The results show that the proposed approach achieves better retrieval performance over several state-of-the-art approaches.
机译:本文介绍了随着Internet上多媒体内容的迅速增加,有效的跨模式检索的需求近来引起了人们的极大关注。许多相关的著作都忽略了非线性空间中模态的潜在语义相关性以及高级模态特征的提取,这些研究仅着眼于线性空间中模态的语义映射以及将低级人工特征用作模态特征表示。为了解决这些问题,作者首先利用卷积神经网络和主题模态来获得各种模态的高级语义特征。因此,他们提出了一种基于具有最小最小二乘法的内核的监督学习算法,该算法可以捕获跨模态的语义相关性。最后,通过训练集学习不同模式的联合模型。在包括Wikipedia,Pascal和MIRFlickr的三个基准数据集上进行了广泛的实验。结果表明,与几种最新方法相比,该方法具有更好的检索性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号