首页> 外文期刊>Pattern Analysis and Applications >Topic correlation model for cross-modal multimedia information retrieval
【24h】

Topic correlation model for cross-modal multimedia information retrieval

机译:跨模式多媒体信息检索主题关联模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a simple and effective topic correlation model (TCM) for cross-modal multimedia retrieval by jointly modeling the text and image components in multimedia documents. In this model, the image component is represented by the bag-of-features model based on local scale-invariant feature transform features, meanwhile the text component is described by a topic distribution learned from a latent topic model. Statistical correlations between these two mid-level features are investigated by mapping them into a semantic space. These cross-modality correlations are used to calculate the conditional probabilities of answers in one modality while given query in the other modality. The model is tested on three cross-modal retrieval benchmark problems including Wikipedia documents in both English and Chinese. Experimental results have demonstrated that the new TCM model achieves the best performance compared to recent state-of-the-art cross-modal retrieval models on the given benchmarks.
机译:在本文中,我们通过联合建模多媒体文档中的文本和图像组件,提出了一种用于跨模式多媒体检索的简单有效的主题相关模型(TCM)。在该模型中,图像分量由基于局部尺度不变特征变换特征的特征包模型表示,同时文本分量由从潜在主题模型中学习的主题分布描述。通过将这两个中级特征映射到语义空间中,可以研究它们之间的统计相关性。这些交叉模态相关性用于计算一个模态中答案的条件概率,而给定另一种模态中的查询。该模型在包括英语和中文的Wikipedia文档在内的三个交叉模式检索基准问题上进行了测试。实验结果表明,在给定的基准上,新的TCM模型与最新的交叉模式检索模型相比具有最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号