首页> 外文期刊>International journal of computer science and network security >Nonlinear Stationary Channel Equalization of QAM Signals using Multiplicative Neuron Model
【24h】

Nonlinear Stationary Channel Equalization of QAM Signals using Multiplicative Neuron Model

机译:乘性神经元模型对QAM信号进行非线性平稳通道均衡

获取原文
获取原文并翻译 | 示例

摘要

A novel feed forward multiplicative neural network architecture with optimum number of nodes is used for adaptive channel equalization in this paper.The replacement of summation at each node by multiplication results in more powerful mapping because of its capability of processing higher-order information from training data. Performance comparison with Chebyshev neural network show that the proposed equalizer provides satisfactory results in terms of mean square error convergence curves and bit error rate performance at various levels of signal to noise ratios.
机译:本文采用一种新颖的具有最优节点数的前馈乘法神经网络架构来进行自适应信道均衡。由于可以处理训练数据中的高阶信息,因此用乘法替换每个节点上的求和结果会产生更强大的映射。与Chebyshev神经网络的性能比较表明,所提出的均衡器在均方误差收敛曲线和各种信噪比水平下的误码率性能方面均提供令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号