首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Nonlinear channel equalization for QAM signal constellation usingartificial neural networks
【24h】

Nonlinear channel equalization for QAM signal constellation usingartificial neural networks

机译:基于人工神经网络的QAM信号星座图的非线性信道均衡

获取原文
获取原文并翻译 | 示例

摘要

Application of artificial neural networks (ANN's) to adaptivenchannel equalization in a digital communication system with 4-QAM signalnconstellation is reported in this paper. A novel computationallynefficient single layer functional link ANN (FLANN) is proposed for thisnpurpose. This network has a simple structure in which the nonlinearitynis introduced by functional expansion of the input pattern byntrigonometric polynomials. Because of input pattern enhancement, thenFLANN is capable of forming arbitrarily nonlinear decision boundariesnand can perform complex pattern classification tasks. Consideringnchannel equalization as a nonlinear classification problem, the FLANNnhas been utilized for nonlinear channel equalization. The performance ofnthe FLANN is compared with two other ANN structures [a multilayernperceptron (MLP) and a polynomial perceptron network (PPN)] along with anconventional linear LMS-based equalizer for different linear andnnonlinear channel models. The effect of eigenvalue ratio (EVR) of inputncorrelation matrix on the equalizer performance has been studied. Thencomparison of computational complexity involved for the three ANNnstructures is also provided
机译:本文报道了人工神经网络(ANN)在具有4-QAM信号星座的数字通信系统中自适应信道均衡的应用。为此目的,提出了一种新颖的计算效率低的单层功能链接ANN(FLANN)。该网络具有简单的结构,其中通过三角函数多项式对输入模式进行功能扩展而引入非线性。由于输入模式的增强,FLANN能够形成任意非线性决策边界,并可以执行复杂的模式分类任务。将nchannel均衡视为非线性分类问题,FLANNn已用于非线性信道均衡。将FLANN的性能与其他两种ANN结构[多层感知器(MLP)和多项式感知器网络(PPN)]以及传统的基于线性LMS的均衡器(用于不同的线性和非线性通道模型)进行了比较。研究了输入相关矩阵的特征值比(EVR)对均衡器性能的影响。然后还提供了三种ANNn结构涉及的计算复杂度的比较

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号