首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >Nonlinear channel equalization for QAM signal constellation using artificial neural networks
【24h】

Nonlinear channel equalization for QAM signal constellation using artificial neural networks

机译:基于人工神经网络的QAM信号星座图的非线性信道均衡

获取原文
获取原文并翻译 | 示例

摘要

Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.
机译:本文报道了人工神经网络(ANN)在具有4-QAM信号星座的数字通信系统中的自适应信道均衡中的应用。为此,提出了一种新颖的计算效率高的单层功能链接ANN(FLANN)。该网络具有简单的结构,其中通过三角多项式对输入模式进行功能扩展来引入非线性。由于输入模式的增强,FLANN能够形成任意非线性决策边界,并且可以执行复杂的模式分类任务。将信道均衡视为非线性分类问题,FLANN已用于非线性信道均衡。将FLANN的性能与其他两种ANN结构[多层感知器(MLP)和多项式感知器网络(PPN)]以及用于不同线性和非线性通道模型的传统基于线性LMS的均衡器进行了比较。研究了输入相关矩阵的特征值比(EVR)对均衡器性能的影响。还提供了三种ANN结构所涉及的计算复杂度的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号