首页> 外文期刊>International journal of computational vision and robotics >Lapped transform-based image denoising with the generalised Gaussian prior
【24h】

Lapped transform-based image denoising with the generalised Gaussian prior

机译:广义高斯先验的基于变换的重叠图像去噪

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new image denoising method based on the statistical modelling of dyadic rearranged lapped transform (LT) coefficients. Based on Kolomogrov-Smirnov (KS) goodness of fit test, we have shown that the statistical distribution of the dyadic rearranged LT coefficients in a subband is best approximated by the generalised Gaussian distribution. A Bayesian minimum mean square error (MMSE) estimator is used to obtain the estimate of noise free coefficients, which is based on modelling the global distribution of the dyadic rearranged LT coefficients using generalised Gaussian distribution. The LT-based image denoising method with generalised Gaussian prior shows highly encouraging (both objective and subjective) results when compared to several well-known image denoising methods.
机译:我们介绍了一种基于二进位重排重叠变换(LT)系数统计模型的新图像去噪方法。基于Kolomogrov-Smirnov(KS)拟合优度检验,我们表明,子带中二进位重排LT系数的统计分布最好通过广义高斯分布来近似。贝叶斯最小均方误差(MMSE)估计器用于获得无噪声系数的估计,该估计是基于使用广义高斯分布对二重排列的LT系数的全局分布进行建模的。与几种众所周知的图像去噪方法相比,具有广义高斯先验的基于LT的图像去噪方法显示出令人鼓舞的(客观和主观)结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号