首页> 外文期刊>Image Processing, IET >Medical image denoising by generalised Gaussian mixture modelling with edge information
【24h】

Medical image denoising by generalised Gaussian mixture modelling with edge information

机译:带有边缘信息的广义高斯混合建模对医学图像的去噪

获取原文
获取原文并翻译 | 示例

摘要

Denoising is a classical challenging problem in medical image processing and understanding. In this study, the authors propose a novel generalised Gaussian mixture model (GGMM) with edge information to denoise medical images. In the first stage, they extend Gaussian mixture model to the GGMM for modelling the noisy medical images and use minimum-mean-square error under the Bayesian framework to derive a non-linear mapping function for processing the noisy images. In the second stage, they refine the results by the kernel density function of the edge information. Experimental results on the Simulated Brain Database and real computed tomography abdomen images demonstrate that GGMM-Edge Information achieves very competitive denoising performance, especially the image grey, visual quality and edge preservation in detail, compared with several state-of-the-art denoising algorithms.
机译:去噪是医学图像处理和理解中的经典挑战性问题。在这项研究中,作者提出了一种具有边缘信息的新型广义高斯混合模型(GGMM),以对医学图像进行降噪。在第一阶段,他们将高斯混合模型扩展到GGMM以对嘈杂的医学图像建模,并在贝叶斯框架下使用最小均方误差导出非线性映射函数来处理嘈杂的图像。在第二阶段,他们通过边缘信息的核密度函数完善结果。在模拟大脑数据库和真实计算机断层扫描腹部图像上的实验结果表明,GGMM- E dge I 信息可实现非常有竞争力的降噪性能,尤其是图像的灰度,视觉质量和边缘与几种最先进的降噪算法相比,它的细节得以保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号