首页> 外文期刊>Image Processing, IET >Using a generalised method of moment approach and 2D-generalised autoregressive conditional heteroscedasticity modelling for denoising ultrasound images
【24h】

Using a generalised method of moment approach and 2D-generalised autoregressive conditional heteroscedasticity modelling for denoising ultrasound images

机译:使用广义矩方法和二维广义自回归条件异方差建模对超声图像进行降噪

获取原文
获取原文并翻译 | 示例

摘要

This study presents a novel approach for ultrasound (US) images denoising. It concerns a class of generalised method of moments estimators with interesting asymptotic properties for wavelet coefficients 2D generalised autoregressive conditional heteroscedasticity modelling. Afterwards, these estimators can be used for removing noise from US images. Indeed, a minimum mean -square error method is applied for estimating the clean wavelet image coefficients. To judge the quality of the denoising procedure, a link between the denoising efficiency procedure and a proposed asymmetry measure is established. Several tests have been carried out to prove the performance of the proposed approach. The obtained results are compared with those of contemporary image denoising methods using usual image quality assessment metrics and two proposed no-reference quality metrics.
机译:这项研究提出了一种超声(US)图像去噪的新方法。它涉及一类具有有趣渐近性质的矩估计的广义方法,用于小波系数的二维广义自回归条件异方差建模。之后,这些估计器可用于消除美国图像中的噪声。实际上,最小均方误差方法被应用于估计干净的小波图像系数。为了判断去噪过程的质量,在去噪效率过程和提出的不对称度量之间建立了联系。已经进行了一些测试,以证明所提出方法的性能。将获得的结果与使用常规图像质量评估指标和两个建议的无参考质量指标的当代图像去噪方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号