首页> 外文期刊>IEEE Transactions on Image Processing >Wavelet Denoising of Multicomponent Images Using Gaussian Scale Mixture Models and a Noise-Free Image as Priors
【24h】

Wavelet Denoising of Multicomponent Images Using Gaussian Scale Mixture Models and a Noise-Free Image as Priors

机译:使用高斯尺度混合模型和无噪图像作为先验的多分量图像的小波去噪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a Bayesian wavelet-based denoising procedure for multicomponent images is proposed. A denoising procedure is constructed that 1) fully accounts for the multicomponent image covariances, 2) makes use of Gaussian scale mixtures as prior models that approximate the marginal distributions of the wavelet coefficients well, and 3) makes use of a noise-free image as extra prior information. It is shown that such prior information is available with specific multicomponent image data of, e.g., remote sensing and biomedical imaging. Experiments are conducted in these two domains, in both simulated and real noisy conditions.
机译:本文提出了一种基于贝叶斯小波的多分量图像去噪方法。构造一个去噪程序,其中1)充分考虑了多分量图像的协方差,2)利用高斯比例混合作为先验模型,很好地近似了小波系数的边际分布,并且3)利用了无噪声图像作为额外的先验信息。示出了这样的先验信息可与特定的多分量图像数据一起使用,例如,遥感和生物医学成像。在模拟和真实噪声条件下,在这两个领域中进行了实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号