首页> 外文期刊>IEEE Transactions on Image Processing >Image denoising using scale mixtures of Gaussians in the wavelet domain
【24h】

Image denoising using scale mixtures of Gaussians in the wavelet domain

机译:小波域中使用高斯比例混合的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
机译:我们描述了一种基于面向超完整多尺度的系数的统计模型从数字图像中去除噪声的方法。相邻位置和比例的系数邻域被建模为两个独立随机变量的乘积:一个高斯向量和一个隐藏的正标量乘数。后者调制附近的系数的局部方差,因此能够解释根据经验观察到的系数幅度之间的相关性。在此模型下,每个系数的贝叶斯最小二乘估计值将减少为隐藏乘数变量所有可能值上的局部线性估计值的加权平均值。我们通过用加性高斯白噪声污染的图像进行的仿真证明,无论从视觉上还是在均方误差方面,该方法的性能都大大超过了以前发表的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号