首页> 外文期刊>International Journal of Adaptive Control and Signal Processing >Hybrid kernel learning via genetic optimization for TS fuzzy system identification
【24h】

Hybrid kernel learning via genetic optimization for TS fuzzy system identification

机译:基于遗传优化的混合核学习用于TS模糊系统辨识。

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new TS fuzzy system identification approach based on hybrid kernel learning and an improved genetic algorithm (GA). Structure identification is achieved by using support vector regression (SVR), in which a hybrid kernel function is adopted to improve regression performance. For multiple-parameter selection of SVR, the proposed GA is adopted to speed up the search process and guarantee the least number of support vectors. As a result, a concise model structure can be determined by these obtained support vectors. Then, the premise parameters of fuzzy rules can be extracted from results of SVR, and the consequent parameters can be optimized by the least-square method. Simulation results show that the resulting fuzzy model not only achieves satisfactory accuracy, but also takes on good generalization capability.
机译:本文提出了一种基于混合核学习和改进遗传算法的TS模糊系统辨识方法。通过使用支持向量回归(SVR)实现结构识别,其中采用混合核函数来提高回归性能。对于SVR的多参数选择,采用建议的GA来加快搜索过程并保证最少的支持向量。结果,可以通过这些获得的支持向量来确定简洁的模型结构。然后,可以从SVR的结果中提取模糊规则的前提参数,并通过最小二乘法对结果参数进行优化。仿真结果表明,所得到的模糊模型不仅达到满意的精度,而且具有良好的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号