首页> 外文期刊>Fuzzy sets and systems >Domains of competence of fuzzy rule based classification systems with data complexity measures: A case of study using a fuzzy hybrid genetic based machine learning method
【24h】

Domains of competence of fuzzy rule based classification systems with data complexity measures: A case of study using a fuzzy hybrid genetic based machine learning method

机译:具有数据复杂性度量的基于模糊规则的分类系统的权限范围:以基于模糊混合遗传的机器学习方法为例

获取原文
获取原文并翻译 | 示例

摘要

The analysis of data complexity is a proper framework to characterize the tackled classification problem and to identify domains of competence of classifiers. As a practical outcome of this framework, the proposed data complexity measures may facilitate the choice of a classifier for a given problem. The aim of this paper is to study the behaviour of a fuzzy rule based classification system and its relationship to data complexity. We use as a case of study the fuzzy hybrid genetic based machine learning method presented in [H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy GBML approaches for pattern classification problems, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 35 (2) (2005) 359-365]. We examine several metrics of data complexity over a wide range of data sets built from real data and try to extract behaviour patterns from the results. We obtain rules which describe both good or bad behaviours of the fuzzy rule based classification system. These rules use values of data complexity metrics in their antecedents, so we try to predict the behaviour of the method from the data set complexity metrics prior to its application. Therefore, we can establish the domains of competence of this fuzzy rule based classification system.
机译:数据复杂性分析是表征已解决分类问题和识别分类器能力范围的适当框架。作为该框架的实际结果,提出的数据复杂性度量可能有助于为给定问题选择分类器。本文的目的是研究基于模糊规则的分类系统的行为及其与数据复杂性的关系。我们以[H. Ishibuchi,T。Yamamoto,T。Nakashima,针对模式分类问题的模糊GBML方法的混合,《 IEEE系统,人与控制论交易》,B部分:控制论35(2)(2005)359-365]。我们检查了从真实数据构建的广泛数据集上的几种数据复杂性指标,并尝试从结果中提取行为模式。我们获得描述基于模糊规则的分类系统的好坏行为的规则。这些规则在其先例中使用数据复杂性指标的值,因此我们尝试在应用该方法之前根据数据集复杂性指标来预测该方法的行为。因此,我们可以建立这种基于模糊规则的分类系统的权限范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号