首页> 美国卫生研究院文献>Brain Sciences >Computer-Aided Diagnosis System of Alzheimer’s Disease Based on Multimodal Fusion: Tissue Quantification Based on the Hybrid Fuzzy-Genetic-Possibilistic Model and Discriminative Classification Based on the SVDD Model
【2h】

Computer-Aided Diagnosis System of Alzheimer’s Disease Based on Multimodal Fusion: Tissue Quantification Based on the Hybrid Fuzzy-Genetic-Possibilistic Model and Discriminative Classification Based on the SVDD Model

机译:基于多模式融合的阿尔茨海默病计算机辅助诊断系统:基于混合模糊遗传-可能性模型的组织定量和基于SVDD模型的判别分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An improved computer-aided diagnosis (CAD) system is proposed for the early diagnosis of Alzheimer’s disease (AD) based on the fusion of anatomical (magnetic resonance imaging (MRI)) and functional ( F-fluorodeoxyglucose positron emission tomography (FDG-PET)) multimodal images, and which helps to address the strong ambiguity or the uncertainty produced in brain images. The merit of this fusion is that it provides anatomical information for the accurate detection of pathological areas characterized in functional imaging by physiological abnormalities. First, quantification of brain tissue volumes is proposed based on a fusion scheme in three successive steps: modeling, fusion and decision. (1) Modeling which consists of three sub-steps: the initialization of the centroids of the tissue clusters by applying the Bias corrected Fuzzy C-Means (FCM) clustering algorithm. Then, the optimization of the initial partition is performed by running genetic algorithms. Finally, the creation of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) tissue maps by applying the Possibilistic FCM clustering algorithm. (2) Fusion using a possibilistic operator to merge the maps of the MRI and PET images highlighting redundancies and managing ambiguities. (3) Decision offering more representative anatomo-functional fusion images. Second, a support vector data description (SVDD) classifier is used that must reliably distinguish AD from normal aging and automatically detects outliers. The “divide and conquer” strategy is then used, which speeds up the SVDD process and reduces the load and cost of the calculating. The robustness of the tissue quantification process is proven against noise (20% level), partial volume effects and when inhomogeneities of spatial intensity are high. Thus, the superiority of the SVDD classifier over competing conventional systems is also demonstrated with the adoption of the 10-fold cross-validation approach for synthetic datasets (Alzheimer disease neuroimaging (ADNI) and Open Access Series of Imaging Studies (OASIS)) and real images. The percentage of classification in terms of accuracy, sensitivity, specificity and area under ROC curve was 93.65%, 90.08%, 92.75% and 97.3%; 91.46%, 92%, 91.78% and 96.7%; 85.09%, 86.41%, 84.92% and 94.6% in the case of the ADNI, OASIS and real images respectively.
机译:提出了一种改进的计算机辅助诊断(CAD)系统,用于基于解剖学(磁共振成像(MRI))和功能性(F-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)融合技术的阿尔茨海默氏病(AD)的早期诊断)多模态图像,这有助于解决大脑图像中产生的强烈歧义或不确定性。这种融合的优点在于,它可提供解剖学信息,以准确检测以生理异常为特征的功能性影像学特征的病理区域。首先,基于三个连续步骤的融合方案,提出了脑组织体积的量化方法:建模,融合和决策。 (1)建模包括三个子步骤:通过应用偏倚校正的模糊C均值(FCM)聚类算法初始化组织簇的质心。然后,通过运行遗传算法对初始分区进行优化。最后,应用可能性FCM聚类算法创建了白质(WM),灰质(GM)和脑脊液(CSF)组织图。 (2)使用可能的算子进行融合,以融合MRI和PET图像的地图,从而突出显示冗余并处理歧义。 (3)提供更具代表性的解剖功能融合图像的决策。其次,使用支持向量数据描述(SVDD)分类器,该分类器必须可靠地区分AD与正常老化,并自动检测异常值。然后使用“分而治之”策略,这可以加快SVDD处理过程并减少计算的负载和成本。经证明,组织量化过程的鲁棒性可抵御噪声(20%的水平),部分体积效应以及空间强度的不均匀性很高的情况。因此,通过对合成数据集(阿尔茨海默氏病神经影像学(ADNI)和影像学开放研究系列(OASIS))采用10倍交叉验证方法,也证明了SVDD分类器优于竞争传统系统的优势。图片。 ROC曲线下的准确性,敏感性,特异性和面积分类的百分比分别为93.65%,90.08%,92.75%和97.3%; 91.46%,92%,91.78%和96.7%;对于ADNI,OASIS和真实图像,分别为85.09%,86.41%,84.92%和94.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号