首页> 外文会议>International Conference on Computational Science and Its Applications(ICCSA 2007) pt.3; 20070826-29; Kuala Lumpur(MY) >Identification of Fuzzy Set-Based Fuzzy Systems by Means of Data Granulation and Genetic Optimization
【24h】

Identification of Fuzzy Set-Based Fuzzy Systems by Means of Data Granulation and Genetic Optimization

机译:基于数据集和遗传优化的基于模糊集的模糊系统辨识

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an identification of fuzzy set-based fuzzy systems formed by using respective fuzzy spaces (fuzzy set). This model implements system structure and parameter identification by means of information granulation and genetic algorithms. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with HCM clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions in the premise and the initial values of polynomial functions in the consequence. And the initial parameters are tuned by means of the genetic algorithms and the least square method. To optimally identify the structure and parameters we exploit the consecutive optimization of fuzzy set-based fuzzy model by means of genetic algorithms. An aggregate objective function is constructed in order to strike a sound balance between the approximation and generalization capabilities of the fuzzy model. The experimental part of the studies involves two representative numerical examples.
机译:本文提出了一种通过使用各自的模糊空间(模糊集)形成的基于模糊集的模糊系统的识别。该模型通过信息粒化和遗传算法实现系统结构和参数识别。信息颗粒是通过邻近性,相似性或功能性标准将对象(尤其是数据)关联在一起的集合。通过HCM聚类实现的信息粒化有助于确定模糊模型的初始参数,例如前提中的隶属函数的初始顶点和结果中的多项式函数的初始值。并利用遗传算法和最小二乘法对初始参数进行了调整。为了最优地识别结构和参数,我们利用遗传算法利用了基于模糊集的模糊模型的连续优化。为了在模糊模型的逼近能力和泛化能力之间取得合理的平衡,构造了一个总体目标函数。研究的实验部分涉及两个代表性的数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号