首页> 外文期刊>Intelligent data analysis >Selective dissemination of XML documents based on genetically learned user model and Support Vector Machines
【24h】

Selective dissemination of XML documents based on genetically learned user model and Support Vector Machines

机译:基于遗传学习的用户模型和支持向量机的XML文档的选择性分发

获取原文
获取原文并翻译 | 示例

摘要

Extensible Markup Language (XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine (SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
机译:可扩展标记语言(XML)已经成为Internet上互操作性的一种媒介。随着以XML形式发布的文档数量的增加,需要基于用户兴趣选择性地分发XML文档。在提出的技术中,将自适应遗传算法和多类支持向量机(SVM)结合使用来学习用户模型。根据用户的反馈,系统会自动适应用户的偏好和兴趣。用户模型和相似性度量用于选择性分发XML文档的连续流。在广泛的XML文档上进行的实验评估表明,该方法在准确性和效率方面大大提高了选择性分发任务的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号