首页> 外文期刊>Intelligent automation and soft computing >A ROBUST OBJECT TRACKING ALGORITHM BASED ON SURF AND KALMAN FILTER
【24h】

A ROBUST OBJECT TRACKING ALGORITHM BASED ON SURF AND KALMAN FILTER

机译:基于表面和卡尔曼滤波的鲁棒目标跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient robust object tracking approach based on SURF and Kalman Filter is proposed. SURF as an outstanding local invariant feature is employed. Based on the SURF feature, a SURF match method is proposed. A combination method using an ingenious method and KF is used to predict the possible region, in which the tracking object may appear. Only in this region, SURF features are extracted and matched. It can significantly reduce the computational complexity. A histogram-based re-match process is employed to dislodge failure tracking after SURF matching. To verify the performance of the proposed algorithm, several comparative experiments are conducted. The results reveal that the proposed method achieves better performance and accuracy than conventional methods.
机译:提出了一种基于SURF和卡尔曼滤波的有效鲁棒目标跟踪方法。使用SURF作为出色的局部不变特征。基于SURF特征,提出了一种SURF匹配方法。使用巧妙的方法和KF的组合方法可预测可能出现跟踪对象的区域。仅在该区域中,SURF特征才被提取和匹配。它可以大大降低计算复杂度。基于直方图的重匹配过程用于消除SURF匹配后的故障跟踪。为了验证所提出算法的性能,进行了一些比较实验。结果表明,与传统方法相比,该方法具有更好的性能和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号