首页> 外文期刊>Intelligent automation and soft computing >Two adaptive control strategies for trajectory tracking of the inertia wheel pendulum: neural networks vis a vis model regressor
【24h】

Two adaptive control strategies for trajectory tracking of the inertia wheel pendulum: neural networks vis a vis model regressor

机译:用于惯性轮摆的轨迹跟踪的两种自适应控制策略:相对于模型回归器的神经网络

获取原文
获取原文并翻译 | 示例

摘要

The problem addressed in this paper is to achieve robust motion control of the inertia wheel pendulum (IWP). Specifically, trajectory tracking control of the pendulum of the IWP under the assumption of uncertain model is discussed. Two new robust algorithms are introduced whose design departs from a model-based input-output linearization controller. Then, the control problem is firstly solved by means of an adaptive neural network-based controller and secondly by an adaptive regressor-based controller. For both controllers, rigorous analysis of the respective closed-loop system is given, where Barbalat's lemma is used to conclude asymptotic convergence of the pendulum tracking error. In addition, the wheel velocity and adaptive extension signals are shown to be bounded. An extensive real-time experimental study validates the introduced theory, where the performance of a classical linear PID controller and the two new adaptive schemes are compared.
机译:本文解决的问题是实现惯性轮摆(IWP)的鲁棒运动控制。具体地说,讨论了在不确定模型假设下IWP摆的轨迹跟踪控制。引入了两种新的鲁棒算法,其设计与基于模型的输入输出线性化控制器不同。然后,首先通过基于自适应神经网络的控制器解决控制问题,其次通过基于自适应回归器的控制器解决控制问题。对于两个控制器,都给出了对各个闭环系统的严格分析,其中使用Barbalat引理来推断摆跟踪误差的渐近收敛性。另外,车轮速度和自适应扩展信号被示为有界。广泛的实时实验研究验证了引入的理论,该理论比较了经典线性PID控制器的性能和两种新的自适应方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号