首页> 外文期刊>Intelligent automation and soft computing >Dynamic Task Assignment for Multi-AUV Cooperative Hunting
【24h】

Dynamic Task Assignment for Multi-AUV Cooperative Hunting

机译:多AUV合作狩猎的动态任务分配

获取原文
获取原文并翻译 | 示例

摘要

For cooperative hunting by a multi-AUV (multiple autonomous underwater vehicles) team, not only basic problems such as path planning and collision avoidance should be considered but also task assignments in a dynamic way. In this paper, an integrated algorithm is proposed by combining the self-organizing map (SOM) neural network and the Glasius Bio-Inspired Neural Network (GBNN) approach to improve the efficiency of multi-AUV cooperative hunting. With this integrated algorithm, the SOM neural network is adopted for dynamic allocation, while the GBNN is employed for path planning. It deals with various situations for single/multiple target(s) hunting in underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of a cooperative hunting task with efficiency and adaptability.
机译:对于由多个AUV(多个自动水下机器人)团队进行的合作狩猎,不仅应考虑诸如路径规划和避免碰撞之类的基本问题,而且还应考虑动态分配任务。本文提出了一种结合自组织图(SOM)神经网络和格拉苏斯生物启发神经网络(GBNN)方法的集成算法,以提高多AUV协同狩猎的效率。利用这种集成算法,采用SOM神经网络进行动态分配,而采用GBNN进行路径规划。它可以处理有障碍物的水下环境中单个/多个目标狩猎的各种情况。仿真结果表明,所提算法能够高效,自适应地完成协同搜索任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号