首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Multisensor Information Fusion for People Tracking With a Mobile Robot: A Particle Filtering Approach
【24h】

Multisensor Information Fusion for People Tracking With a Mobile Robot: A Particle Filtering Approach

机译:用于移动机器人跟踪的多传感器信息融合:一种粒子过滤方法

获取原文
获取原文并翻译 | 示例

摘要

People tracking based on multisensor information fusion is addressed. A framework is presented for fusing the laser range finder (LRF) data and the monocular camera data. Based on this framework, an LRF-based detection algorithm is proposed to identify the pairs of human legs, by combining motion information and metric features. Moreover, a geometric observation model is developed for the camera to extract both the range and bearing measurements of the target person by focusing the target’s shoes with the camera. Then, a near-optimal particle filter is designed to fuse the measurements from the LRF and the camera. To prevent the sample impoverishment, a procedure of sample diversity improvement is used after the resampling step. The full occlusion problem is solved using image matching based on speeded up robust feature. Note that either of the LRF and the camera can work independently, since both the range and bearing are simultaneously acquired from the LRF or the camera. As a result, flexible and robust tracking can be achieved. Extensive experiments demonstrate that the proposed approach achieves high tracking accuracy and robustness. Especially, only a very small number of particles suffice to maintain good tracking performance.
机译:解决了基于多传感器信息融合的人员跟踪。提出了用于融合激光测距仪(LRF)数据和单眼相机数据的框架。在此框架的基础上,提出了一种基于LRF的检测算法,通过结合运动信息和度量特征来识别人的双腿。此外,还为相机开发了一种几何观察模型,可通过将目标鞋子对准相机来提取目标人的距离和方位测量值。然后,设计了一个接近最佳的粒子滤波器,以融合LRF和相机的测量结果。为了防止样品变质,在重新采样步骤之后使用了提高样品多样性的程序。使用基于加速鲁棒特征的图像匹配解决了完全遮挡问题。请注意,LRF和摄像机都可以独立工作,因为同时从LRF或摄像机获取了范围和方位。结果,可以实现灵活且鲁棒的跟踪。大量实验表明,该方法具有较高的跟踪精度和鲁棒性。尤其是,只有极少量的颗粒足以维持良好的跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号