首页> 外文期刊>IEEE transactions on industrial informatics >Robust Intensity-Based Localization Method for Autonomous Driving on Snow–Wet Road Surface
【24h】

Robust Intensity-Based Localization Method for Autonomous Driving on Snow–Wet Road Surface

机译:基于鲁棒强度的雪湿路面自动驾驶定位方法

获取原文
获取原文并翻译 | 示例

摘要

Autonomous vehicles are being developed rapidly in recent years. In advance implementation stages, many particular problems must be solved to bring this technology into the market place. This paper focuses on the problem of driving in snow and wet road surface environments. First, the quality of laser imaging detection and ranging (LIDAR) reflectivity decreases on wet road surfaces. Therefore, an accumulation strategy is designed to increase the density of online LIDAR images. In order to enhance the texture of the accumulated images, principal component analysis is used to understand the geometrical structures and texture patterns in the map images. The LIDAR images are then reconstructed using the leading principal components with respect to the variance distribution accounted by each eigenvector. Second, the appearance of snow lines deforms the expected road context in LIDAR images. Accordingly, the edge profiles of the LIDAR and map images are extracted to encode the lane lines and roadside edges. Edge matching between the two profiles is then calculated to improve localization in the lateral direction. The proposed method has been tested and evaluated using real data that are collected during the winter of 2016–2017 in Suzu and Kanazawa, Japan. The experimental results show that the proposed method increases the robustness of autonomous driving on wet road surfaces, provides a stable performance in laterally localizing the vehicle in the presence of snow lines, and significantly reduces the overall localization error at a speed of 60 km/h.
机译:近年来,自动驾驶汽车正在迅速发展。在实施阶段,必须解决许多特殊问题才能将该技术推向市场。本文着重于在积雪和潮湿的路面环境中行驶的问题。首先,潮湿路面上的激光成像检测和测距(LIDAR)反射率质量下降。因此,设计了一种累积策略来增加在线LIDAR图像的密度。为了增强累积图像的纹理,使用主成分分析来了解地图图像中的几何结构和纹理图案。然后,对于每个特征向量所占的方差分布,使用前导主成分来重建LIDAR图像。其次,雪线的出现会使LIDAR图像中的预期道路环境变形。因此,LIDAR的边缘轮廓和地图图像被提取以对车道线和路边进行编码。然后计算两个轮廓之间的边缘匹配,以改善横向方向上的定位。所提出的方法已经使用真实数据进行了测试和评估,这些数据是在2016年至2017年冬季在日本铃鹿和金泽市收集的。实验结果表明,提出的方法提高了在潮湿路面上自动驾驶的鲁棒性,在存在雪线的情况下在横向定位车辆时提供了稳定的性能,并在60 km / h的速度下显着降低了整体定位误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号