首页> 外文期刊>IEEE transactions on industrial informatics >Virtual Sensor Development for Multioutput Nonlinear Processes Based on Bilinear Neighborhood Preserving Regression Model With Localized Construction
【24h】

Virtual Sensor Development for Multioutput Nonlinear Processes Based on Bilinear Neighborhood Preserving Regression Model With Localized Construction

机译:基于Bilinear邻域保护回归模型的多输出非线性过程虚拟传感器开发

获取原文
获取原文并翻译 | 示例

摘要

The traditional data-driven virtual sensors mainly define the outer shape of the data, but they cannot provide any insight into the micro perspective of manifold proximity indicating the local relationships among the data samples. In this article, a regression model with localized construction named bilinear neighborhood preserving regression (BNPR) model is proposed by synchronously exploring the local manifold geometry among both the process variables and primary variables and developing the regression relationship for the estimates of the primary variables. The model is constructed under multi-output to discover the inherent relationships among the primary variables instead of building independent models for each primary variable. The effectiveness of the proposed algorithm is demonstrated by case studies carried out on a simulated penicillin production process and a real-life semiconductor process.
机译:传统的数据驱动虚拟传感器主要定义数据的外形,但它们不能向歧管接近度的微视角提供任何洞察,这表明数据样本中的局部关系。在本文中,通过同步探索过程变量和主要变量中的局部歧管几何来同步探索初级变量的局部歧管几何,提出了一种名为Bilinear邻域保留回归(BNPR)模型的局部构造的回归模型。该模型是在多输出下构造的,以发现主变量之间的固有关系,而不是为每个主变量构建独立模型。通过在模拟的青霉素生产过程和现实生活半导体过程中进行了案例研究证明了所提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号