首页> 外文期刊>IEEE transactions on automation science and engineering >Development of Self-Learning Kernel Regression Models for Virtual Sensors on Nonlinear Processes
【24h】

Development of Self-Learning Kernel Regression Models for Virtual Sensors on Nonlinear Processes

机译:非线性过程中虚拟传感器自学习核回归模型的开发

获取原文
获取原文并翻译 | 示例

摘要

The prediction accuracy of the traditional kernel with data-driven regression methods strongly depends on the appropriate selection of the kernel function and aims at solving the nonlinearity of the input space. In this paper, a self-learning kernel regression model is proposed. A special kernel space from the measured data is learned and designed, so that combined with dimension reductions on the input variables, the regression behavior between the projected input variables and the output variable is found. The model is posed as a semidefinite programming problem with the objective function to find the maximum variance between the learned manifolds. The kernel is data dependent and can be generated online whenever a new data point is available. The effectiveness of the proposed algorithm is demonstrated through the case studies on a simple nonlinear system and a real semiconductor process.
机译:使用数据驱动的回归方法对传统内核的预测精度在很大程度上取决于对内核函数的适当选择,并且旨在解决输入空间的非线性问题。本文提出了一种自学习核回归模型。从测量数据中学习并设计一个特殊的核空间,以便与输入变量的降维结合,找到投影输入变量和输出变量之间的回归行为。将该模型作为具有目标函数的半确定规划问题,以查找学习的流形之间的最大方差。内核依赖于数据,并且只要有新数据点可用就可以在线生成。通过在简单的非线性系统和实际的半导体工艺上的案例研究证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号