首页> 外文期刊>IEEE transactions on industrial informatics >Delta-Bar-Delta Neural-Network-Based Control Approach for Power Quality Improvement of Solar-PV-Interfaced Distribution System
【24h】

Delta-Bar-Delta Neural-Network-Based Control Approach for Power Quality Improvement of Solar-PV-Interfaced Distribution System

机译:基于Delta-Bar-Delta神经网络的电能质量改进的基于网络的控制方法 - PV接口分配系统

获取原文
获取原文并翻译 | 示例

摘要

A serious concern regarding deterioration in power quality has emerged with the increasing integration of solar photovoltaic (PV) energy sources to the utility primarily in the scenario of a weak distribution grid. Therefore, power quality improvement of the grid-tied solar energy conversion system is paramount by implementation of a robust control technique. This paper deals with a delta-bar-delta neural network (NN) control for operating optimally by feeding active power to the loads and remaining power to the grid as a function of distribution static compensator capabilities, such as mitigating harmonics, balancing of load, and improving power factor. The control algorithm provides the ability to adjust weights adaptively in an independent manner, and hence, it offers alleviation in model complexity predominant during abnormal grid conditions along with reduction in computational time. Moreover, the NN-based control technique offers enhanced accuracy due to the combinational neural structure in the estimation process. In addition, the system performance according to the IEEE-519 standard has been verified; hence, it is proficient in maintaining the power quality. The solar-PV-array-efficient utilization is accomplished through an incremental-conductance-based maximum power point tracking technique. For validating the behavior of the proposed system, its performance is studied using simulation results. Moreover, a prototype is developed for validation, and experimental results corroborate reliable operation under nonideal grid conditions comprising of a wide range of load variations, voltage sag, and varying solar insolation conditions.
机译:对于电力质量恶化的严重关注,越来越多的太阳能光伏(PV)能源的整合主要在弱分配网格的情况下。因此,通过实现稳健的控制技术,电网绑定太阳能转换系统的电力质量改进是至关重要的。本文涉及Δ-bar-delta神经网络(Nn)控制,用于通过向负载供电和剩余电力作为分配静态补偿器能力的函数来实现最佳的操作,例如减轻谐波,负载平衡,提高功率因数。控制算法以独立的方式自适应地调整权重的能力,从而提供了在异常网格条件下的模型复杂性主导,以及计算时间的降低。此外,基于NN的控制技术由于估计过程中的组合神经结构而提供增强的精度。此外,根据IEEE-519标准的系统性能已经过验证;因此,它熟练地保持电能质量。通过基于增量电导的最大功率点跟踪技术实现太阳能-PV阵列的利用。为了验证所提出的系统的行为,使用模拟结果研究其性能。此外,开发了一种原型用于验证,实验结果在非膜网格条件下证实可靠操作,包括广泛的负载变化,电压下垂和变化的太阳溶解条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号