首页> 外文期刊>IEEE transactions on industrial informatics >Real-Time Kinematic Control for Redundant Manipulators in a Time-Varying Environment: Multiple-Dynamic Obstacle Avoidance and Fast Tracking of a Moving Object
【24h】

Real-Time Kinematic Control for Redundant Manipulators in a Time-Varying Environment: Multiple-Dynamic Obstacle Avoidance and Fast Tracking of a Moving Object

机译:冗余机械手在时变环境中的实时运动控制:移动物体的多动态障碍避免和快速跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a real-time kinematic control strategy to realize fast tracking of redundant robot manipulators in a time-varying environment. An obstacle avoidance method based on the law of conservation of energy is proposed to adjust the motion states of robot manipulators in real time. This method defines that the total energy for the end effector consists of an energy toward object (ETO) and an energy around obstacle (EAO), and that the total energy for each critical point on manipulator composes a relative kinematic energy (RKE) and an energy memory (EM). The total energies remain constant at each sampling period, and the conversions between the ETO and the EAO or between the RKE and the EM are recognized to obey a distance-related S-function. Such considerations ensure the smooth movement of the manipulator and avoid collisions with obstacles. In real-time planning, an unsupervised single neuron PID model is raised to adaptively increase the convergence ratio of moving object tracking via the online learning of the principal component analysis. Then, combined with the dynamic obstacle avoidance method based on conservation of energy, the kinematic control strategy is established for redundant manipulators to track a moving object rapidly in the presence of multiple dynamic obstacles. Theory analysis and various contrast experimental results show that the proposed kinematic control strategy is feasible and has fast convergence.
机译:本文介绍了实时运动控制策略,实现了在时变环境中快速跟踪冗余机器人操纵器。提出了一种基于能量守恒定律的障碍物避免方法,以实时调整机器人操纵器的运动状态。该方法定义了末端执行器的总能量由朝向物体(ETO)的能量和障碍物(EAO)周围的能量组成,并且操纵器上每个关键点的总能量组成相对运动能量(RKE)和一个能量记忆(EM)。在每个采样周期中,总能量保持恒定,并且ETO和EAO之间的转换或RKE和EM之间的转换被识别为遵守与距离相关的S函数。这种考虑确保了操纵器的平稳运动,并避免碰撞障碍物。在实时规划中,提高了无监督的单个神经元PID模型,以通过在线学习通过在线学习自适应地提高移动物体跟踪的收敛比。然后,结合基于能量守恒的动态障碍避免方法,为冗余操纵器建立了运动控制策略,以在多种动态障碍物的存在下迅速地跟踪移动物体。理论分析和各种对比实验结果表明,该拟议的运动控制策略是可行的,并具有快速的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号