首页> 外文期刊>IEEE transactions on industrial informatics >Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing
【24h】

Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing

机译:基于稀疏自动编码器的深度转移学习,以预测制造工具的使用寿命

获取原文
获取原文并翻译 | 示例

摘要

Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction.
机译:具有特征学习能力和非线性函数逼近能力的深度学习已证明其对机器故障预测的有效性。同时,很少研究如何传输由历史故障数据训练的深度网络来预测新对象。本文提出了一种基于稀疏自动编码器(SAE)的深度迁移学习(DTL)网络。在DTL方法中,使用了三种转移策略,即权重转移,隐藏特征的转移学习和权重更新,将经过历史故障数据训练的SAE转移到新对象。通过这些策略,无需训练的监督信息即可实现对新对象的预测。此外,深度传输网络对新对象的学习特征与历史故障数据具有共同的相似特征,有利于准确预测。通过对切削刀具的剩余使用寿命(RUL)预测进行案例研究,以验证DTL方法的有效性。首先,在脱机过程中通过带有切割工具的RUL信息的运行失败数据来训练SAE网络。然后将经过训练的网络转移到正在运行的新工具中,以进行在线RUL预测。高精度的预测结果显示了DTL方法在RUL预测中的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号