首页> 外文期刊>IEEE transactions on industrial informatics >Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing
【24h】

Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing

机译:基于稀疏AutoEncoder剩余寿命预测制造工具的深度传输学习

获取原文
获取原文并翻译 | 示例

摘要

Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction.
机译:深入学习具有学习和非线性函数近似的能力,已经为机器故障预测的有效性。虽然,如何通过历史失败数据接受训练的深网络以预测新对象的预测。本文介绍了基于稀疏自动码器(SAE)的深度传输学习(DTL)网络。在DTL方法中,三个传输策略,即重量传输,传输隐藏特征和权重更新,用于将历史失败数据训练的SAE传输到新对象。通过这些策略,实现了未经监督培训信息的新对象的预测。此外,对于新对象的深度传输网络的学习特征与历史失败数据的新对象共享关节和类似特征,这是有利于准确的预测。对剩余使用寿命(RUL)的案例研究进行了切削工具的预测,以验证DTL方法的有效性。首先通过碰到故障数据训练SAE网络,其中具有切割工具的rul信息在离线过程中。然后将培训的网络转移到在线ruL预测的操作下的新工具。高精度的预测结果显示了用于RUL预测的DTL方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号