首页> 外文期刊>Knowledge-Based Systems >Deep sparse autoencoder prediction model based on adversarial learning for cross-domain recommendations
【24h】

Deep sparse autoencoder prediction model based on adversarial learning for cross-domain recommendations

机译:基于对抗域推荐对抗性学习的深度稀疏自动化器预测模型

获取原文
获取原文并翻译 | 示例

摘要

Online recommender systems generally suffer from severe data sparsity problems, and this are particularly prevalent in newly launched systems that do not have sufficient amounts of data. Cross-domain recommendations can provide us with some new ideas for assisting with user recommendations in sparse target domains by transferring knowledge from a source domain with rich data. In this paper, a deep sparse autoencoder prediction model based on adversarial learning for cross-domain recommendations (DSAP-AL) is proposed to improve the accuracy of rating predictions in similar cross domain recommender systems. Specifically, joint matrix factorization and adversarial network learning models are adopted to integrate and align user and item latent factor spaces in a unified pattern. Then, a deep sparse autoencoder is represented and modeled by transferring the latent factors and interlayer weights. Furthermore, a domain factor adaptation algorithm is proposed to capture robust user and item factors, and the learned regularization constraints are added to the objective function, thereby alleviating the data sparsity issue. Experimental results on four real-world datasets demonstrate that, even without overlapping entities (users or items) in the source and target domains, the proposed DSAP-AL method achieves competitive performance relative to other state-of-the-art individual and cross domain approaches. Moreover, the DSAP-AL model is not only effective for scenarios with sparse data but also robust for noise-containing recommendations. ? 2021 Elsevier B.V. All rights reserved.commentSuperscript/Subscript Available/comment
机译:在线推荐系统通常遭受严重的数据稀疏问题,这在新推出的系统中特别普遍,没有足够的数据量。跨域建议可以通过将知识从带有丰富的数据传输来自源域的知识来协助稀疏目标域中的用户建议提供一些新的想法。在本文中,提出了一种基于对抗域推荐(DSAP-A1)的对抗性学习的深稀疏的自动化器预测模型,以提高类似跨域推荐系统中的评级预测的准确性。具体地,采用联合矩阵分解和对抗网络学习模型,以统一的模式集成和对准用户和项目潜在因子空间。然后,通过传送潜在因子和层间权重来表示和建模深稀疏的AutoEncoder。此外,提出了一种域因子自适应算法来捕获鲁棒用户和项目因素,并且学习的正则化约束被添加到目标函数,从而减轻了数据稀疏问题。在四个现实数据集上的实验结果表明,即使在源域和目标域中的实体(用户或项目),所提出的DSAP-AL方法也可以实现相对于其他最先进的个人和交叉域的竞争性能方法。此外,DSAP-AL模型不仅对具有稀疏数据的场景有效,而且对包含噪声的建议的稳健性。还是2021 elestvier b.v.保留所有权利。&注释&上标/下标可用& /评论

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第23期|106948.1-106948.14|共14页
  • 作者单位

    Yanshan Univ Coll Informat Sci & Engn Qinhuangdao Hebei Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe Qinhuangdao Hebei Peoples R China;

    Yanshan Univ Coll Informat Sci & Engn Qinhuangdao Hebei Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe Qinhuangdao Hebei Peoples R China;

    Yanshan Univ Coll Informat Sci & Engn Qinhuangdao Hebei Peoples R China;

    Yanshan Univ Coll Informat Sci & Engn Qinhuangdao Hebei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data sparsity; Sparse autoencoder; Adversarial learning; Recommender systems; Matrix factorization;

    机译:数据稀疏;稀疏的autoencoder;对抗学习;推荐系统;矩阵分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号