首页> 外文期刊>Image and Vision Computing >Detection of obstacles on runways using ego-motion compensation and tracking of significant features
【24h】

Detection of obstacles on runways using ego-motion compensation and tracking of significant features

机译:使用自我运动补偿和重要特征跟踪来检测跑道上的障碍物

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a method for obstacle detection on a runway for autonomous navigation and landing of an aircraft, in presence of extraneous features, such as tire-marks. An obstacle is defined as an object, which has a significant motion or height relative to the runway. Suitable features are extracted from the image and warping is performed, using approximately known camera and plane parameters. to compensate the ego-motion as far as possible. Residual disparity after warping is estimated using an optical flow algorithm. Features are tracked from frame to frame to obtain more reliable estimates of their motion. The residual disparities are used to correct the motion Parameters with a robust method, where features having large residual disparities are signaled as obstacles. Nelson's optical flow constraint is proposed to separate moving obstacles from stationary ones. A Bayesian framework is used at every stage so that the confidence in the estimates can be determined.
机译:本文介绍了一种在跑道上进行障碍物检测的方法,用于在存在无关功能(例如轮胎印记)的情况下自动导航和降落飞机。障碍物定义为相对于跑道具有明显运动或高度的物体。从图像中提取合适的特征,并使用大约已知的相机和平面参数进行变形。尽可能地补偿自我运动。使用光流算法估计翘曲后的残差。逐帧跟踪要素以获得更可靠的运动估计。残留视差用于通过鲁棒方法校正运动参数,在该方法中,将具有较大残留视差的特征作为障碍物发出信号。提出了尼尔森的光流约束,以将移动障碍物与静止障碍物分开。在每个阶段都使用贝叶斯框架,以便可以确定估计值的置信度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号