首页> 外文期刊>Image and Vision Computing >Improved background modeling for real-time spatio-temporal non-parametric moving object detection strategies
【24h】

Improved background modeling for real-time spatio-temporal non-parametric moving object detection strategies

机译:实时时空非参数运动物体检测策略的改进背景建模

获取原文
获取原文并翻译 | 示例

摘要

Answering to the growing demand of machine vision applications for the latest generation of electronic devices endowed with camera platforms, several moving object detection strategies have been proposed in recent years. Among them, spatio-temporal based non-parametric methods have recently drawn the attention of many researchers. These methods, by combining a background model and a foreground model, achieve high-quality detections in sequences recorded with non-completely static cameras and in scenarios containing complex backgrounds. However, since they have very high memory and computational associated costs, they apply some simplifications in the background modeling process, therefore decreasing the quality of the modeling. Here, we propose a novel background modeling that is applicable to any spatio-temporal non-parametric moving object detection strategy. Through an efficient and robust method to dynamically estimate the bandwidth of the kernels used in the modeling, both the usability and the quality of previous approaches are improved. Furthermore, by adding a novel mechanism to selectively update the background model, the number of misdetections is significantly reduced, achieving an additional quality improvement. Empirical studies on a wide variety of video sequences demonstrate that the proposed background modeling significantly improves the quality of previous strategies while maintaining the computational requirements of the detection process.
机译:响应于机器视觉应用对配备相机平台的最新一代电子设备的不断增长的需求,近年来提出了几种运动物体检测策略。其中,基于时空的非参数方法最近引起了许多研究者的关注。这些方法通过组合背景模型和前景模型,可以在使用非完全静态相机记录的序列以及包含复杂背景的场景中实现高质量的检测。但是,由于它们具有很高的内存和与计算相关的成本,因此它们在后台建模过程中应用了一些简化方法,因此降低了建模质量。在这里,我们提出了一种适用于任何时空非参数移动物体检测策略的新颖背景建模。通过一种有效且健壮的方法来动态估计建模中使用的内核的带宽,既提高了可用性又提高了先前方法的质量。此外,通过添加一种新颖的机制来选择性地更新背景模型,可以大大减少误检测的次数,从而进一步提高质量。对各种视频序列的经验研究表明,提出的背景建模可以显着提高先前策略的质量,同时保持检测过程的计算要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号