首页> 外文期刊>Journal of software >Fast and Robust Moving Objects Detection based on Non-parametric Background Modeling
【24h】

Fast and Robust Moving Objects Detection based on Non-parametric Background Modeling

机译:基于非参数背景建模的快速鲁棒运动目标检测

获取原文

摘要

Fast and reliable detection of moving objects isone of the important requirements for many computervision and video analysis applications. Mean shift basednon-parametric background modeling supports moresensitive and robust detection in dynamic outdoor scenes.However it is prohibitive to real-time applications such asvideo surveillance. This paper aims to deal with thelimitation of high computational complexity. Firstly, coarseto fine methods are proposed to avoid raster scanning entireimage. Foreground pixels are detected in coarse level toroughly locate the foreground objects in the image, and thenfine detection is performed on the corresponding blocksgradually. Secondly, fast mean shift approach is presentedaccording to temporal dependencies. Mean shift iterationsare performed starting from incoming data and the modesobtained last time. The experimental results show that theproposed algorithm is effective and efficient in dynamicenvironment. The proposed algorithm has been appliedto move objects detection in our real-time marinevideo surveillance system.
机译:快速可靠地检测运动对象是许多计算机视觉和视频分析应用程序的重要要求之一。基于均值漂移的非参数背景建模可在动态室外场景中提供更灵敏和强大的检测功能,但它对诸如视频监控之类的实时应用却是不利的。本文旨在解决高计算复杂性的局限性。首先,提出了从粗糙到精细的方法,以避免光栅扫描整个图像。对前景像素进行粗略检测,以在图像中大致定位前景对象,然后逐步对相应的块进行精细检测。其次,根据时间相关性提出了快速均值漂移方法。从输入数据和上次获得的模式开始执行平均移位迭代。实验结果表明,该算法在动态环境下是有效的。所提出的算法已应用于我们的实时海洋视频监视系统中的运动目标检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号