首页> 外文期刊>Image Processing, IET >Background subtraction using Gaussian–Bernoulli restricted Boltzmann machine
【24h】

Background subtraction using Gaussian–Bernoulli restricted Boltzmann machine

机译:使用高斯-伯努利限制玻尔兹曼机进行背景扣除

获取原文
获取原文并翻译 | 示例

摘要

The background subtraction is an important technique in computer vision which segments moving objects into video sequences by comparing each new frame with a learned background model. In this work, the authors propose a novel background subtraction method based on Gaussian-Bernoulli restricted Boltzmann machines (GRBMs). The GRBM is different from the ordinary restricted Boltzmann machine (RBM) by using real numbers as inputs, resulting in a constrained mixture of Gaussians, which is one of the most widely used techniques to solve the background subtraction problem. The GRBM makes it easy to learn the variance of pixel values and takes the advantage of the generative model paradigm of the RBM. They present a simple technique to reconstruct the learned background model from a given input frame and to extract the foreground from the background using the variance learned for each pixel. Furthermore, they demonstrate the effectiveness of the proposed technique with extensive experimentation and quantitative evaluation on several commonly used public data sets for background subtraction.
机译:背景扣除是计算机视觉中的一项重要技术,该技术通过将每个新帧与学习到的背景模型进行比较,将运动对象分割为视频序列。在这项工作中,作者提出了一种基于高斯-伯努利受限玻尔兹曼机(GRBMs)的新颖的背景扣除方法。 GRBM与普通的受限Boltzmann机器(RBM)的不同之处在于,它使用实数作为输入,导致高斯混合约束,这是解决背景减法问题最广泛使用的技术之一。 GRBM使得学习像素值的方差变得容易,并利用了RBM的生成模型范例。他们提出了一种简单的技术,可以从给定的输入帧中重建学习到的背景模型,并使用对每个像素学习到的方差从背景中提取前景。此外,他们通过对数个常用的公共数据集进行广泛的实验和定量评估,证明了所提出技术的有效性,以进行背景扣除。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号