首页> 外文期刊>Knowledge-Based Systems >Improved Gaussian-Bernoulli restricted Boltzmann machine for learning discriminative representations
【24h】

Improved Gaussian-Bernoulli restricted Boltzmann machine for learning discriminative representations

机译:改进的Gaussian-Bernoulli受限Boltzmann机器,用于学习判别表示

获取原文
获取原文并翻译 | 示例

摘要

Restricted Boltzmann machines (RBMs) have received considerable research interest in recent years because of their capability to discover latent representations in an unsupervised manner. The standard RBM is only suitable for processing binary-valued data. To address this limitation, the Gaussian-Bernoulli RBM (GRBM) has been designed to model real-valued data, particularly images. A GRBM that seeks to map real-valued data nonlinearly into a latent representation space is typically trained by contrastive divergence learning. However, most existing GRBM-based models neglect the inherent interpoint affinity information from the original data that can be used to enhance the expression ability of the model. In this study, a novel interpoint-affinity-based GRBM (abGRBM) is proposed to learn discriminative representations in the hidden layer. By incorporating the interpoint affinity information into the training process of the GRBM, the proposed model can not only utilize the GRBM's powerful latent representation learning capabilities for real-valued data, it can also transform the original data into another space with improved separability. We prove the availability of our model using several image datasets of Microsoft Research Asia Multimedia for unsupervised clustering and supervised classification tasks. The experimental results show the superior performance of the GRBM in discovering discriminative representations and demonstrate the effectiveness of the affinity information. (C) 2019 Elsevier B.V. All rights reserved.
机译:受限玻尔兹曼机器(RBM)近年来由于其能够以无人监督的方式发现潜在表示的能力而受到了广泛的研究兴趣。标准RBM仅适用于处理二进制值的数据。为了解决此限制,高斯-伯努利RBM(GRBM)设计用于对实值数据(尤其是图像)建模。寻求将非线性的实值数据映射到潜在表示空间的GRBM通常通过对比发散学习进行训练。但是,大多数现有的基于GRBM的模型都忽略了可用于增强模型表达能力的原始数据中固有的点间亲和力信息。在这项研究中,提出了一种新颖的基于点间亲和力的GRBM(abGRBM),以学习隐藏层中的判别表示。通过将点间亲和力信息整合到GRBM的训练过程中,所提出的模型不仅可以利用GRBM强大的潜在表示学习功能来处理实值数据,还可以将原始数据转换为具有改进的可分离性的另一个空间。我们使用Microsoft Research Asia Multimedia的多个图像数据集证明了我们模型的可用性,这些数据集用于无监督的聚类和有监督的分类任务。实验结果表明GRBM在发现区分表示方面表现出优异的性能,并证明了亲和力信息的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号