首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >A Parallel Gaussian–Bernoulli Restricted Boltzmann Machine for Mining Area Classification With Hyperspectral Imagery
【24h】

A Parallel Gaussian–Bernoulli Restricted Boltzmann Machine for Mining Area Classification With Hyperspectral Imagery

机译:一个平行的高斯-Bernoulli限制Boltzmann机器,用于采矿区分类,具有高光谱图像

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel feature extraction method is proposed for hyperspectral image classification using a Gaussian-Bernoulli restricted Boltzmann machine (GBRBM) in parallel. The proposed approach employs several GBRBMs with different hidden layers to extract deep features from hyperspectral images, which are nonlinear and local invariant. Based on the learned deep features, a logistic regression layer is trained for classification. The proposed approaches are carried out on two public hyperspectral datasets: Pavia University dataset and Salinas dataset, and a new dataset obtained by HySpex imaging spectrometer in the mining area in Xuzhou. The obtained results reveal that the proposed approach offers superior performance compared to traditional classifiers. The advantage of the proposed GBRBM is that it can extract deep features in an unsupervised way and reduce the prediction time by using GPU. In particular, the classification results of the mining area provide valuable suggestions to improve environmental protection.
机译:本文采用了一种新颖的特征提取方法,用于并行使用高斯 - 伯努利受限制的Boltzmann机(GBRBM)的高光谱图像分类。所提出的方法采用几种GBRBMS,具有不同的隐藏层,以从高光谱图像中提取深度特征,这是非线性和局部不变的。基于学习的深度功能,培训逻辑回归层进行分类。拟议的方法是在两个公共超光谱数据集:Pavia大学数据集和SalinaS数据集,以及徐州采矿区的Hyspex成像光谱仪获得的新数据集。获得的结果表明,与传统分类器相比,该方法提供了卓越的性能。所提出的GBRBM的优点是它可以以无监督的方式提取深度特征,并通过使用GPU来降低预测时间。特别是,采矿区的分类结果提供了有价值的建议,以改善环境保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号